Attributable risk: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
en>Trappist the monk
Line 1: Line 1:
The '''Wigner D-matrix''' is a matrix in an [[irreducible representation]] of the groups [[SU(2)]] and [[SO(3)]]. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric [[rigid rotor]]s.  The matrix was introduced in 1927 by [[Eugene Wigner]].
Golda is what's created on my birth certificate even though it is not the name on my beginning certificate. Credit authorising is how she makes a residing. To climb is some thing I truly enjoy performing. I've usually loved living in Kentucky but now I'm contemplating other options.<br><br>Here is my web page; [https://www-ocl.gist.ac.kr/work/xe/?document_srl=605236 free online tarot card readings]
 
== Definition of the Wigner D-matrix ==
Let ''J<sub>x</sub>'', ''J<sub>y</sub>'', ''J<sub>z</sub>'' be generators of the [[Lie algebra]] of SU(2) and SO(3). In [[quantum mechanics]] these
three operators are the components of a vector operator known as ''angular momentum''. Examples
are the [[Angular_momentum#Angular_momentum_in_quantum_mechanics|angular momentum]] of an electron
in an atom, [[Spin (physics)|electronic spin]],and  the angular momentum
of a [[rigid rotor]]. In all cases the three operators satisfy the following [[commutation relations]],
:<math> [J_x,J_y] = i J_z,\quad [J_z,J_x] = i J_y,\quad [J_y,J_z] = i J_x, </math>
where ''i'' is the purely [[imaginary number]] and Planck's constant <math>\hbar</math> has been put equal to one. The operator
:<math> J^2 = J_x^2 + J_y^2 + J_z^2 </math>
is a [[Casimir invariant|Casimir operator]] of SU(2) (or SO(3) as the case may be).
It may be diagonalized together with <math>J_z</math> (the choice of this operator
is a convention), which commutes with <math>J^ 2</math>. That is, it can be shown that there is a complete set of kets with
:<math> J^2 |jm\rangle = j(j+1) |jm\rangle,\quad  J_z |jm\rangle = m |jm\rangle,
</math>
where ''j'' = 0, 1/2, 1, 3/2, 2,... and ''m'' = -j, -j + 1,..., ''j''. For SO(3) the ''quantum number'' ''j'' is integer.
 
A [[rotation operator]] can be written as
:<math> \mathcal{R}(\alpha,\beta,\gamma) = e^{-i\alpha J_z}e^{-i\beta J_y}e^{-i\gamma J_z},
</math>
where ''α'', ''β'', ''γ'' are [[Euler angles]] (characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).  
 
The '''Wigner D-matrix''' is a square matrix of dimension 2''j'' + 1 with general element
:<math> D^j_{m'm}(\alpha,\beta,\gamma) \equiv
\langle jm' | \mathcal{R}(\alpha,\beta,\gamma)| jm \rangle =
e^{-im'\alpha } d^j_{m'm}(\beta)e^{-i m\gamma}.
</math>
The matrix with general element
:<math>
d^j_{m'm}(\beta)= \langle jm' |e^{-i\beta J_y} | jm \rangle
</math>
is known as '''Wigner's (small) d-matrix'''.
 
== Wigner (small) d-matrix ==
Wigner<ref>{{cite book |first=E. P. |last=Wigner |title={{lang|de|Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren}} |publisher=Vieweg Verlag |location=Braunschweig |year=1931 }} Translated into English by {{cite book |first=J. J. |last=Griffin |title=Group Theory and its Application to the Quantum Mechanics of Atomic Spectra |publisher=Academic Press |location=New York |year=1959 }}</ref> gave the following expression
:<math>
\begin{array}{lcl}
d^j_{m'm}(\beta) &=& [(j+m')!(j-m')!(j+m)!(j-m)!]^{1/2}
\sum\limits_s \left[\frac{(-1)^{m'-m+s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!} \right.\\
&&\left. \cdot \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2s}\left(\sin\frac{\beta}{2}\right)^{m'-m+2s} \right].
\end{array}
</math>
The sum over ''s'' is over such values that the factorials are nonnegative.
 
''Note:'' The d-matrix elements defined here are real. In the often-used z-x-z convention of [[Euler_angles#Conventions|Euler angles]], the factor <math>(-1)^{m'-m+s}</math> in this formula is replaced by <math>(-1)^s\, i^{m-m'}</math>, causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.
 
The d-matrix elements are related to [[Jacobi polynomials]] <math>P^{(a,b)}_k(\cos\beta)</math> with nonnegative <math>a\,</math> and <math>b\,</math>.<ref>{{cite book |first=L. C. |last=Biedenharn |first2=J. D. |last2=Louck |title=Angular Momentum in Quantum Physics |publisher=Addison-Wesley |location=Reading |year=1981 |isbn=0-201-13507-8 }}</ref> Let
:<math> k = \min(j+m,\,j-m,\,j+m',\,j-m').
</math>
 
:<math>
\hbox{If}\quad k =
\begin{cases}
        j+m:  &\quad a=m'-m;\quad \lambda=m'-m\\
        j-m:  &\quad a=m-m';\quad \lambda= 0 \\
        j+m': &\quad a=m-m';\quad \lambda= 0 \\
        j-m': &\quad a=m'-m;\quad \lambda=m'-m \\
\end{cases}
</math>
 
Then, with <math>b=2j-2k-a\,</math>, the relation is
 
:<math>
d^j_{m'm}(\beta) = (-1)^{\lambda} \binom{2j-k}{k+a}^{1/2} \binom{k+b}{b}^{-1/2} \left(\sin\frac{\beta}{2}\right)^a \left(\cos\frac{\beta}{2}\right)^b P^{(a,b)}_k(\cos\beta),
</math>
where <math> a,b \ge 0. \, </math>
 
== Properties of the Wigner D-matrix ==
The complex conjugate of the D-matrix satisfies a number of differential properties
that can be formulated concisely by introducing the following operators with <math>(x,\, y,\,z) = (1,\,2,\,3)</math>,
:<math>
\begin{array}{lcl}
\hat{\mathcal{J}}_1 &=&  i \left( \cos \alpha \cot \beta \,
{\partial \over \partial \alpha} \, + \sin \alpha \,
{\partial \over \partial \beta} \, - {\cos \alpha \over \sin \beta} \,
{\partial \over \partial \gamma} \, \right) \\
\hat{\mathcal{J}}_2 &=&  i  \left( \sin \alpha \cot \beta \,
{\partial \over \partial \alpha} \, - \cos \alpha \;
{\partial \over \partial \beta } \, - {\sin \alpha \over \sin \beta} \,
{\partial \over \partial \gamma } \, \right)  \\
\hat{\mathcal{J}}_3 &=& - i  \; {\partial \over \partial \alpha}  ,
\end{array}
</math>
which have quantum mechanical meaning: they are space-fixed [[rigid rotor]] angular momentum operators.
 
Further,
:<math>
\begin{array}{lcl}
\hat{\mathcal{P}}_1 &=& \, i \left( {\cos \gamma \over \sin \beta}
    {\partial \over \partial \alpha } - \sin \gamma
    {\partial \over \partial \beta }
    - \cot \beta \cos \gamma {\partial \over \partial \gamma} \right)
      \\
\hat{\mathcal{P}}_2 &=& \, i  \left( - {\sin \gamma \over \sin \beta}
    {\partial \over \partial \alpha} - \cos \gamma
    {\partial \over \partial \beta}
    + \cot \beta \sin \gamma {\partial \over \partial \gamma} \right)
  \\
\hat{\mathcal{P}}_3 &=&  - i  {\partial\over \partial \gamma}, \\
\end{array}
</math>
which have quantum mechanical meaning: they are body-fixed [[rigid rotor]] angular momentum operators.
 
The operators satisfy the [[commutation relations]]
:<math>
\left[\mathcal{J}_1, \, \mathcal{J}_2\right] = i \mathcal{J}_3, \qquad \hbox{and}\qquad
\left[\mathcal{P}_1, \, \mathcal{P}_2\right] = -i \mathcal{P}_3
</math>
and the corresponding relations with the indices permuted cyclically.
The <math>\mathcal{P}_i</math> satisfy ''anomalous commutation relations''
(have a minus sign on the right hand side).
The two sets mutually commute,
:<math>
\left[\mathcal{P}_i, \, \mathcal{J}_j\right] = 0,\quad i,\,j = 1,\,2,\,3,
</math>
and the total operators squared are equal,
:<math>
\mathcal{J}^2 \equiv \mathcal{J}_1^2+ \mathcal{J}_2^2 + \mathcal{J}_3^2  =
\mathcal{P}^2 \equiv \mathcal{P}_1^2+ \mathcal{P}_2^2 + \mathcal{P}_3^2 .
</math>
 
Their explicit form is,
:<math>
\mathcal{J}^2= \mathcal{P}^2 =
-\frac{1}{\sin^2\beta} \left(
\frac{\partial^2}{\partial \alpha^2}
+\frac{\partial^2}{\partial \gamma^2}
-2\cos\beta\frac{\partial^2}{\partial\alpha\partial \gamma} \right)
-\frac{\partial^2}{\partial \beta^2}
-\cot\beta\frac{\partial}{\partial \beta}.
</math>
 
The operators <math>\mathcal{J}_i</math> act on the first (row) index of the D-matrix,
:<math>
\mathcal{J}_3 \,  D^j_{m'm}(\alpha,\beta,\gamma)^* =
  m' \,  D^j_{m'm}(\alpha,\beta,\gamma)^* ,
</math>
and
:<math>
(\mathcal{J}_1 \pm i \mathcal{J}_2)\, D^j_{m'm}(\alpha,\beta,\gamma)^* =
\sqrt{j(j+1)-m'(m'\pm 1)} \,  D^j_{m'\pm 1, m}(\alpha,\beta,\gamma)^* .
</math>
 
The operators <math>\mathcal{P}_i</math> act on the second (column) index of the D-matrix
:<math>
\mathcal{P}_3 \,  D^j_{m'm}(\alpha,\beta,\gamma)^* =
  m \,  D^j_{m'm}(\alpha,\beta,\gamma)^* ,
</math>
and because of the anomalous commutation relation the raising/lowering operators
are defined  with reversed signs,
:<math>
(\mathcal{P}_1 \mp i \mathcal{P}_2)\, D^j_{m'm}(\alpha,\beta,\gamma)^* =
\sqrt{j(j+1)-m(m\pm 1)} \,  D^j_{m', m\pm1}(\alpha,\beta,\gamma)^* .
</math>
 
Finally,
:<math>
\mathcal{J}^2\, D^j_{m'm}(\alpha,\beta,\gamma)^* =
\mathcal{P}^2\, D^j_{m'm}(\alpha,\beta,\gamma)^* = j(j+1) D^j_{m'm}(\alpha,\beta,\gamma)^*.
</math>
 
In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span
[[irreducible representations]] of the isomorphic [[Lie algebra|Lie algebra's]] generated by  <math>\{\mathcal{J}_i\}</math> and <math>\{-\mathcal{P}_i\}</math>.
 
An important property of the Wigner D-matrix follows from the commutation of
<math> \mathcal{R}(\alpha,\beta,\gamma) </math> with the [[T-symmetry#Time reversal in quantum mechanics|time reversal operator]]
<math>T\,</math>,
:<math>
\langle jm' | \mathcal{R}(\alpha,\beta,\gamma)| jm \rangle =
\langle jm' | T^{\,\dagger} \mathcal{R}(\alpha,\beta,\gamma) T| jm \rangle =
(-1)^{m'-m} \langle j,-m' | \mathcal{R}(\alpha,\beta,\gamma)| j,-m \rangle^*,
</math>
or
:<math>
D^j_{m'm}(\alpha,\beta,\gamma) = (-1)^{m'-m} D^j_{-m',-m}(\alpha,\beta,\gamma)^*.
</math> 
Here we used that <math>T\,</math> is anti-unitary (hence the complex conjugation after moving
<math>T^\dagger\,</math> from ket to bra), <math> T | jm \rangle = (-1)^{j-m} | j,-m \rangle</math> and <math>(-1)^{2j-m'-m} = (-1)^{m'-m}</math>.
 
== Orthogonality relations ==
The Wigner D-matrix elements <math>D^j_{mk}(\alpha,\beta,\gamma)</math> form a complete set
of orthogonal functions of the Euler angles <math>\alpha</math>, <math>\beta,</math> and <math>\gamma</math>:
:<math>
  \int_0^{2\pi} d\alpha \int_0^\pi \sin \beta d\beta \int_0^{2\pi} d\gamma \,\,
  D^{j'}_{m'k'}(\alpha,\beta,\gamma)^\ast D^j_{mk}(\alpha,\beta,\gamma) =
  \frac{8\pi^2}{2j+1} \delta_{m'm}\delta_{k'k}\delta_{j'j}.
</math>
 
This is a special case of the [[Schur orthogonality relations]].
 
== Kronecker product of Wigner D-matrices, Clebsch-Gordan series ==
The set of [[Kronecker product]] matrices
:<math>
\mathbf{D}^j(\alpha,\beta,\gamma)\otimes \mathbf{D}^{j'}(\alpha,\beta,\gamma)
</math>
forms a reducible matrix representation of the groups SO(3) and SU(2). Reduction into irreducible components is by the following equation:
:<math>
  D^j_{m k}(\alpha,\beta,\gamma) D^{j'}_{m' k'}(\alpha,\beta,\gamma) =
  \sum_{J=|j-j'|}^{j+j'} \sum_{M=-J}^J \sum_{K=-J}^J \langle j m j' m' | J M \rangle
              \langle j k j' k' | J K \rangle
  D^J_{M K}(\alpha,\beta,\gamma)
</math>
The symbol <math>\langle j m j' m' | J M \rangle</math> is a
[[Clebsch-Gordan coefficient]].
 
== Relation to spherical harmonics and Legendre polynomials ==
For integer values of <math>l</math>, the D-matrix elements with second index equal to zero are proportional
to [[spherical harmonics]] and [[associated Legendre polynomials]], normalized to unity and with Condon and Shortley phase convention:
:<math>
D^{\ell}_{m 0}(\alpha,\beta,0) = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^{m*} (\beta, \alpha ) = \sqrt{\frac{(\ell-m)!}{(\ell+m)!}}  \, P_\ell^m ( \cos{\beta} ) \, e^{-i m \alpha }
</math>
This implies the following relationship for the d-matrix:
:<math>
d^{\ell}_{m 0}(\beta) = \sqrt{\frac{(\ell-m)!}{(\ell+m)!}}  \, P_\ell^m ( \cos{\beta} )
</math>
When both indices are set to zero, the Wigner D-matrix elements are given by ordinary [[Legendre polynomials]]:
:<math>
  D^{\ell}_{0,0}(\alpha,\beta,\gamma) = d^{\ell}_{0,0}(\beta) = P_{\ell}(\cos\beta).
</math>
 
In the present convention of Euler angles, <math>\alpha</math> is
a longitudinal angle and  <math>\beta</math> is a colatitudinal angle (spherical polar angles
in the physical definition of such angles). This is one of the reasons that the ''z''-''y''-''z''
[[Euler_angles#Conventions|convention]] is used frequently in molecular physics.
From the time-reversal property of the Wigner D-matrix follows immediately
:<math>
\left( Y_{\ell}^m \right) ^* = (-1)^m Y_{\ell}^{-m}.
</math>
There exists a more general relationship to the [[spin-weighted spherical harmonics]]:
:<math>
D^{\ell}_{-m s}(\alpha,\beta,-\gamma) =(-1)^m \sqrt\frac{4\pi}{2{\ell}+1} {}_sY_{{\ell}m}(\beta,\alpha) e^{is\gamma}.
</math>
 
== Relation to Bessel functions ==
In the limit when <math>\ell \gg m, m^\prime</math> we have <math>D^\ell_{mm^\prime}(\alpha,\beta,\gamma) \approx e^{-im\alpha-im^\prime\gamma}J_{m-m^\prime}(\ell\beta)</math> where <math>J_{m-m^\prime}(\ell\beta)</math> is the [[Bessel function]] and <math> \ell\beta</math> is finite.
 
== List of d-matrix elements ==
Using sign convention of Wigner, et al. the d-matrix elements for ''j'' = 1/2, 1, 3/2, and 2 are given below. 
 
for ''j'' = 1/2
*<math>d_{1/2,1/2}^{1/2} = \cos (\theta/2)</math>
*<math>d_{1/2,-1/2}^{1/2} = -\sin (\theta/2)</math>
 
for ''j'' = 1
*<math>d_{1,1}^{1} = \frac{1+\cos \theta}{2}</math>
*<math>d_{1,0}^{1} = \frac{-\sin \theta}{\sqrt{2}}</math>
*<math>d_{1,-1}^{1} = \frac{1-\cos \theta}{2}</math>
*
*<math>d_{0,0}^{1} = \cos \theta</math>
 
 
for ''j'' = 3/2
*<math>d_{3/2,3/2}^{3/2} = \frac{1+\cos \theta}{2} \cos \frac{\theta}{2}</math>
*<math>d_{3/2,1/2}^{3/2} = -\sqrt{3} \frac{1+\cos \theta}{2} \sin \frac{\theta}{2}</math>
*<math>d_{3/2,-1/2}^{3/2} = \sqrt{3} \frac{1-\cos \theta}{2} \cos \frac{\theta}{2}</math>
*<math>d_{3/2,-3/2}^{3/2} = - \frac{1-\cos \theta}{2} \sin \frac{\theta}{2}</math>
*
*<math>d_{1/2,1/2}^{3/2} = \frac{3\cos \theta - 1}{2} \cos \frac{\theta}{2}</math>
*<math>d_{1/2,-1/2}^{3/2} = - \frac{3\cos \theta + 1}{2} \sin \frac{\theta}{2}</math>
 
for ''j'' = 2  <ref>{{cite journal | doi = 10.1002/cmr.a.10061 | author = Edén, M.
| title = Computer simulations in solid-state NMR. I. Spin dynamics theory| journal = Concepts Magn. Reson.| volume=17A| issue=1| pages=117–154| year=2003|}}</ref>
*<math>d_{2,2}^{2} = \frac{1}{4}\left(1 +\cos \theta\right)^2</math>
*<math>d_{2,1}^{2} = -\frac{1}{2}\sin \theta \left(1 + \cos \theta\right)</math>
*<math>d_{2,0}^{2} = \sqrt{\frac{3}{8}}\sin^2 \theta</math>
*<math>d_{2,-1}^{2} = -\frac{1}{2}\sin \theta \left(1 - \cos \theta\right)</math>
*<math>d_{2,-2}^{2} = \frac{1}{4}\left(1 -\cos \theta\right)^2</math>
*
*<math>d_{1,1}^{2} = \frac{1}{2}\left(2\cos^2\theta + \cos \theta-1 \right)</math>
*<math>d_{1,0}^{2} = -\sqrt{\frac{3}{8}} \sin 2 \theta</math>
*<math>d_{1,-1}^{2} = \frac{1}{2}\left(- 2\cos^2\theta + \cos \theta +1 \right)</math>
*
*<math>d_{0,0}^{2} = \frac{1}{2} \left(3 \cos^2 \theta - 1\right)</math>
 
Wigner d-matrix elements with swapped lower indices are found with the relation:
:<math>d_{m', m}^j = (-1)^{m-m'}d_{m, m'}^j = d_{-m,-m'}^j</math>.
 
== See also ==
* [[Clebsch–Gordan coefficients]]
* [[Tensor operator]]
* [[Symmetries in quantum mechanics]]
 
==References==
<!-- ----------------------------------------------------------
  See http://en.wikipedia.org/wiki/Wikipedia:Footnotes for a
  discussion of different citation methods and how to generate
  footnotes using the<ref>, </ref> and  <reference /> tags
----------------------------------------------------------- -->
{{Reflist}}
 
==External links==
* [http://pdg.lbl.gov/2008/reviews/clebrpp.pdf PDG Table of Clebsch-Gordon Coefficients, Spherical Harmonics, and d-Functions]
 
[[Category:Representation theory of Lie groups]]
[[Category:Matrices]]
[[Category:Special hypergeometric functions]]
[[Category:Rotational symmetry]]

Revision as of 14:13, 17 February 2014

Golda is what's created on my birth certificate even though it is not the name on my beginning certificate. Credit authorising is how she makes a residing. To climb is some thing I truly enjoy performing. I've usually loved living in Kentucky but now I'm contemplating other options.

Here is my web page; free online tarot card readings