Total internal reflection: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Ulflund
m Undid revision 593687018 by 50.184.8.151 (talk)
en>Jim1138
m Reverted edits by 92.98.71.76 (talk) to last revision by Jim1138 (HG)
Line 1: Line 1:
'''Transfinite induction''' is an extension of [[mathematical induction]] to [[well-order|well-ordered sets]], for example to sets of [[ordinal number]]s or [[cardinal number]]s.
The title of the author is Garland. Years in the past we moved to Arizona but my spouse desires us to move. The preferred pastime for my kids and me is playing crochet and now I'm attempting to make cash with it. I am a cashier and I'll be promoted soon.<br><br>Here is my website: [http://Www.Deloro2004.com/do-it-yourself-auto-repair-suggestions/ Www.Deloro2004.com]
 
== Transfinite induction ==
 
Let P(α) be a [[Property (philosophy)|property]] defined for all ordinals α. Suppose that whenever P(β) is true for all  β < α, then P(α) is also true (including the case that P(0) is true given the [[vacuously true]] statement that P(α) is true for all <math>\alpha\in\emptyset</math>).  Then transfinite induction tells us that P is true for all ordinals.
 
That is, if P(α) is true whenever P(β) is true for all β < α, then P(α) is true for all α. Or, more practically: in order to prove a property P for all ordinals α, one can assume that it is already known for all smaller β < α.
 
Usually the proof is broken down into three cases:
 
* '''Zero case:''' Prove that <math>P(0)</math> is true.
 
* '''Successor case:''' Prove that for any [[successor ordinal]] α+1, P(α+1) follows from P(α) (and, if necessary, P(β) for all β < α).
 
* '''Limit case:''' Prove that for any [[limit ordinal]] λ, P(λ) follows from [P(β) for all β < λ].
 
Notice that all three cases are identical except for the type of ordinal considered.  They do not formally need to be considered separately, but in practice the proofs are typically so different as to require separate presentations. Zero is sometimes considered a [[limit ordinal]] and then may sometimes be treated in proofs in the same case as limit ordinals.
 
==Transfinite recursion==
{{technical|section|date=October 2013}}
'''Transfinite recursion''' is a method of constructing or defining something and is closely related to the concept of transfinite induction. As an example, a sequence of sets ''A''<sub>α</sub> is defined for every ordinal α, by specifying how to determine ''A''<sub>α</sub> from the sequence of ''A''<sub>β</sub> for β < α.
 
More formally, we can state the Transfinite Recursion Theorem as follows.  Given a class function ''G'': ''V'' → ''V'', there exists a unique [[transfinite sequence]] ''F'': Ord → ''V'' (where Ord is the class of all ordinals) such that
:''F''(α) = ''G''(''F'' <math>\upharpoonright</math> α) for all ordinals α.
As in the case of induction, we may treat different types of ordinals separately: another formulation of transfinite recursion is that given a set ''g''<sub>1</sub>, and class functions ''G''<sub>2</sub>, ''G''<sub>3</sub>, there exists a unique function ''F'': Ord → ''V'' such that
* ''F''(0) = ''g''<sub>1</sub>,
* ''F''(α + 1) = ''G''<sub>2</sub>(''F''(α)), for all α ∈ Ord,
* ''F''(λ) = ''G''<sub>3</sub>(''F'' <math>\upharpoonright</math> λ), for all limit λ ≠ 0.
 
Note that we require the domains of ''G''<sub>2</sub>, ''G''<sub>3</sub> to be broad enough to make the above properties meaningful.  The uniqueness of the sequence satisfying these properties can be proven using transfinite induction.
 
More generally, one can define objects by transfinite recursion on any [[well-founded relation]] ''R''. (''R'' need not even be a set; it can be a [[proper class]], provided it is a [[binary relation#Relations over a set|set-like]] relation; that is, for any ''x'', the collection of all ''y'' such that ''y R x'' must be a set.)
 
==Relationship to the axiom of choice==
Proofs or constructions using induction and recursion often use the [[axiom of choice]] to produce a well-ordered relation that can be treated by transfinite induction. However, if the relation in question is already well-ordered, one can often use transfinite induction without invoking the axiom of choice.<ref>In fact, the domain of the relation does not even need to be a set. It can be a proper class, provided that the relation ''R'' is set-like: for any ''x'', the collection of all ''y'' such that ''y''&nbsp;''R''&nbsp;''x'' must be a set.</ref> For example, many results about [[Borel sets]] are proved by transfinite induction on the ordinal rank of the set; these ranks are already well-ordered, so the axiom of choice is not needed to well-order them.
 
The following construction of the [[Vitali set]] shows one way that the axiom of choice can be used in a proof by transfinite induction:
: First, [[well-order]] the [[real number]]s (this is where the axiom of choice enters via the [[well-ordering theorem]]), giving a sequence <math> \langle r_{\alpha} | \alpha < \beta \rangle </math>, where &beta; is an ordinal with the [[cardinality of the continuum]]. Let ''v''<sub>0</sub> equal ''r''<sub>0</sub>. Then let ''v''<sub>1</sub> equal ''r''<sub>α<sub>1</sub></sub>, where α<sub>1</sub> is least such that ''r''<sub>α<sub>1</sub></sub>&nbsp;&minus;&nbsp;''v''<sub>0</sub> is not a [[rational number]].  Continue; at each step use the least real from the ''r'' sequence that does not have a rational difference with any element thus far constructed in the ''v'' sequence.  Continue until all the reals in the ''r'' sequence are exhausted.  The final ''v'' sequence will enumerate the Vitali set.
The above argument uses the axiom of choice in an essential way at the very beginning, in order to well-order the reals. After that step, the axiom of choice is not used again.
 
Other uses of the axiom of choice are more subtle. For example, a construction by transfinite recursion frequently will not specify a ''unique'' value for ''A''<sub>α+1</sub>, given the sequence up to α, but will specify only a ''condition'' that ''A''<sub>α+1</sub> must satisfy, and argue that there is at least one set satisfying this condition. If it is not possible to define a unique example of such a set at each stage, then it may be necessary to invoke (some form of) the axiom of choice to select one such at each step.  For inductions and recursions of [[countable set|countable]] length, the weaker [[axiom of dependent choice]] is sufficient. Because there are models of [[Zermelo–Fraenkel set theory]] of interest to set theorists that satisfy the axiom of dependent choice but not the full axiom of choice, the knowledge that a particular proof only requires dependent choice can be useful.
 
==See also==
*[[epsilon-induction|∈-induction]]
 
== Notes ==
<references/>
 
== References ==
*{{Citation|last=Suppes|first=Patrick|authorlink=Patrick Suppes|year=1972|title=Axiomatic set theory|publisher=[[Dover Publications]]|isbn=0-486-61630-4|chapter=Section 7.1}}
 
== External links ==
*{{MathWorld |title=Transfinite Induction |id=TransfiniteInduction |author=[[Jonathan Emerson|Emerson, Jonathan]], [[Mark Lezama|Lezama, Mark]] and [[Eric W. Weisstein|Weisstein, Eric W.]] }}
 
{{Set theory}}
 
[[Category:Ordinal numbers]]
[[Category:Recursion]]
[[Category:Mathematical induction]]

Revision as of 12:34, 1 March 2014

The title of the author is Garland. Years in the past we moved to Arizona but my spouse desires us to move. The preferred pastime for my kids and me is playing crochet and now I'm attempting to make cash with it. I am a cashier and I'll be promoted soon.

Here is my website: Www.Deloro2004.com