Attributable risk: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
Uses: +/tweak
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The '''Wigner D-matrix''' is a matrix in an [[irreducible representation]] of the groups [[SU(2)]] and [[SO(3)]]. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric [[rigid rotor]]s.  The matrix was introduced in 1927 by [[Eugene Wigner]].
Hi there. Let me begin by introducing the writer, her title is Sophia. My day occupation is an invoicing officer but I've already applied for another one. To perform lacross is the thing I love most of all. Some time in the past he chose to live in North Carolina and he doesn't strategy on changing it.<br><br>my web page: free tarot readings; [http://srncomm.com/blog/2014/08/25/relieve-that-stress-find-a-new-hobby/ srncomm.com],
 
== Definition of the Wigner D-matrix ==
Let ''J<sub>x</sub>'', ''J<sub>y</sub>'', ''J<sub>z</sub>'' be generators of the [[Lie algebra]] of SU(2) and SO(3). In [[quantum mechanics]] these
three operators are the components of a vector operator known as ''angular momentum''. Examples
are the [[Angular_momentum#Angular_momentum_in_quantum_mechanics|angular momentum]] of an electron
in an atom, [[Spin (physics)|electronic spin]],and  the angular momentum
of a [[rigid rotor]]. In all cases the three operators satisfy the following [[commutation relations]],
:<math> [J_x,J_y] = i J_z,\quad [J_z,J_x] = i J_y,\quad [J_y,J_z] = i J_x, </math>
where ''i'' is the purely [[imaginary number]] and Planck's constant <math>\hbar</math> has been put equal to one. The operator
:<math> J^2 = J_x^2 + J_y^2 + J_z^2 </math>
is a [[Casimir invariant|Casimir operator]] of SU(2) (or SO(3) as the case may be).
It may be diagonalized together with <math>J_z</math> (the choice of this operator
is a convention), which commutes with <math>J^ 2</math>. That is, it can be shown that there is a complete set of kets with
:<math> J^2 |jm\rangle = j(j+1) |jm\rangle,\quad  J_z |jm\rangle = m |jm\rangle,
</math>
where ''j'' = 0, 1/2, 1, 3/2, 2,... and ''m'' = -j, -j + 1,..., ''j''. For SO(3) the ''quantum number'' ''j'' is integer.
 
A [[rotation operator]] can be written as
:<math> \mathcal{R}(\alpha,\beta,\gamma) = e^{-i\alpha J_z}e^{-i\beta J_y}e^{-i\gamma J_z},
</math>
where ''α'', ''β'', ''γ'' are [[Euler angles]] (characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).
 
The '''Wigner D-matrix''' is a square matrix of dimension 2''j'' + 1 with general element
:<math> D^j_{m'm}(\alpha,\beta,\gamma) \equiv
\langle jm' | \mathcal{R}(\alpha,\beta,\gamma)| jm \rangle =
e^{-im'\alpha } d^j_{m'm}(\beta)e^{-i m\gamma}.
</math>
The matrix with general element
:<math>
d^j_{m'm}(\beta)= \langle jm' |e^{-i\beta J_y} | jm \rangle
</math>
is known as '''Wigner's (small) d-matrix'''.
 
== Wigner (small) d-matrix ==
Wigner<ref>{{cite book |first=E. P. |last=Wigner |title={{lang|de|Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren}} |publisher=Vieweg Verlag |location=Braunschweig |year=1931 }} Translated into English by {{cite book |first=J. J. |last=Griffin |title=Group Theory and its Application to the Quantum Mechanics of Atomic Spectra |publisher=Academic Press |location=New York |year=1959 }}</ref> gave the following expression
:<math>
\begin{array}{lcl}
d^j_{m'm}(\beta) &=& [(j+m')!(j-m')!(j+m)!(j-m)!]^{1/2}
\sum\limits_s \left[\frac{(-1)^{m'-m+s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!} \right.\\
&&\left. \cdot \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2s}\left(\sin\frac{\beta}{2}\right)^{m'-m+2s} \right].
\end{array}
</math>
The sum over ''s'' is over such values that the factorials are nonnegative.
 
''Note:'' The d-matrix elements defined here are real. In the often-used z-x-z convention of [[Euler_angles#Conventions|Euler angles]], the factor <math>(-1)^{m'-m+s}</math> in this formula is replaced by <math>(-1)^s\, i^{m-m'}</math>, causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.
 
The d-matrix elements are related to [[Jacobi polynomials]] <math>P^{(a,b)}_k(\cos\beta)</math> with nonnegative <math>a\,</math> and <math>b\,</math>.<ref>{{cite book |first=L. C. |last=Biedenharn |first2=J. D. |last2=Louck |title=Angular Momentum in Quantum Physics |publisher=Addison-Wesley |location=Reading |year=1981 |isbn=0-201-13507-8 }}</ref> Let
:<math> k = \min(j+m,\,j-m,\,j+m',\,j-m').
</math>
 
:<math>
\hbox{If}\quad k =
\begin{cases}
        j+m:  &\quad a=m'-m;\quad \lambda=m'-m\\
        j-m:  &\quad a=m-m';\quad \lambda= 0 \\
        j+m': &\quad a=m-m';\quad \lambda= 0 \\
        j-m': &\quad a=m'-m;\quad \lambda=m'-m \\
\end{cases}
</math>
 
Then, with <math>b=2j-2k-a\,</math>, the relation is
 
:<math>
d^j_{m'm}(\beta) = (-1)^{\lambda} \binom{2j-k}{k+a}^{1/2} \binom{k+b}{b}^{-1/2} \left(\sin\frac{\beta}{2}\right)^a \left(\cos\frac{\beta}{2}\right)^b P^{(a,b)}_k(\cos\beta),
</math>
where <math> a,b \ge 0. \, </math>
 
== Properties of the Wigner D-matrix ==
The complex conjugate of the D-matrix satisfies a number of differential properties
that can be formulated concisely by introducing the following operators with <math>(x,\, y,\,z) = (1,\,2,\,3)</math>,
:<math>
\begin{array}{lcl}
\hat{\mathcal{J}}_1 &=&  i \left( \cos \alpha \cot \beta \,
{\partial \over \partial \alpha} \, + \sin \alpha \,
{\partial \over \partial \beta} \, - {\cos \alpha \over \sin \beta} \,
{\partial \over \partial \gamma} \, \right) \\
\hat{\mathcal{J}}_2 &=&  i  \left( \sin \alpha \cot \beta \,
{\partial \over \partial \alpha} \, - \cos \alpha \;
{\partial \over \partial \beta } \, - {\sin \alpha \over \sin \beta} \,
{\partial \over \partial \gamma } \, \right)  \\
\hat{\mathcal{J}}_3 &=& - i  \; {\partial \over \partial \alpha}  ,
\end{array}
</math>
which have quantum mechanical meaning: they are space-fixed [[rigid rotor]] angular momentum operators.
 
Further,
:<math>
\begin{array}{lcl}
\hat{\mathcal{P}}_1 &=& \, i \left( {\cos \gamma \over \sin \beta}
    {\partial \over \partial \alpha } - \sin \gamma
    {\partial \over \partial \beta }
    - \cot \beta \cos \gamma {\partial \over \partial \gamma} \right)
      \\
\hat{\mathcal{P}}_2 &=& \, i  \left( - {\sin \gamma \over \sin \beta}
    {\partial \over \partial \alpha} - \cos \gamma
    {\partial \over \partial \beta}
    + \cot \beta \sin \gamma {\partial \over \partial \gamma} \right)
  \\
\hat{\mathcal{P}}_3 &=&  - i  {\partial\over \partial \gamma}, \\
\end{array}
</math>
which have quantum mechanical meaning: they are body-fixed [[rigid rotor]] angular momentum operators.
 
The operators satisfy the [[commutation relations]]
:<math>
\left[\mathcal{J}_1, \, \mathcal{J}_2\right] = i \mathcal{J}_3, \qquad \hbox{and}\qquad
\left[\mathcal{P}_1, \, \mathcal{P}_2\right] = -i \mathcal{P}_3
</math>
and the corresponding relations with the indices permuted cyclically.
The <math>\mathcal{P}_i</math> satisfy ''anomalous commutation relations''
(have a minus sign on the right hand side).
The two sets mutually commute,
:<math>
\left[\mathcal{P}_i, \, \mathcal{J}_j\right] = 0,\quad i,\,j = 1,\,2,\,3,
</math>
and the total operators squared are equal,
:<math>
\mathcal{J}^2 \equiv \mathcal{J}_1^2+ \mathcal{J}_2^2 + \mathcal{J}_3^2  =
\mathcal{P}^2 \equiv \mathcal{P}_1^2+ \mathcal{P}_2^2 + \mathcal{P}_3^2 .
</math>
 
Their explicit form is,
:<math>
\mathcal{J}^2= \mathcal{P}^2 =
-\frac{1}{\sin^2\beta} \left(
\frac{\partial^2}{\partial \alpha^2}
+\frac{\partial^2}{\partial \gamma^2}
-2\cos\beta\frac{\partial^2}{\partial\alpha\partial \gamma} \right)
-\frac{\partial^2}{\partial \beta^2}
-\cot\beta\frac{\partial}{\partial \beta}.
</math>
 
The operators <math>\mathcal{J}_i</math> act on the first (row) index of the D-matrix,
:<math>
\mathcal{J}_3 \,  D^j_{m'm}(\alpha,\beta,\gamma)^* =
  m' \,  D^j_{m'm}(\alpha,\beta,\gamma)^* ,
</math>
and
:<math>
(\mathcal{J}_1 \pm i \mathcal{J}_2)\, D^j_{m'm}(\alpha,\beta,\gamma)^* =
\sqrt{j(j+1)-m'(m'\pm 1)} \,  D^j_{m'\pm 1, m}(\alpha,\beta,\gamma)^* .
</math>
 
The operators <math>\mathcal{P}_i</math> act on the second (column) index of the D-matrix
:<math>
\mathcal{P}_3 \,  D^j_{m'm}(\alpha,\beta,\gamma)^* =
  m \,  D^j_{m'm}(\alpha,\beta,\gamma)^* ,
</math>
and because of the anomalous commutation relation the raising/lowering operators
are defined  with reversed signs,
:<math>
(\mathcal{P}_1 \mp i \mathcal{P}_2)\, D^j_{m'm}(\alpha,\beta,\gamma)^* =
\sqrt{j(j+1)-m(m\pm 1)} \,  D^j_{m', m\pm1}(\alpha,\beta,\gamma)^* .
</math>
 
Finally,
:<math>
\mathcal{J}^2\, D^j_{m'm}(\alpha,\beta,\gamma)^* =
\mathcal{P}^2\, D^j_{m'm}(\alpha,\beta,\gamma)^* = j(j+1) D^j_{m'm}(\alpha,\beta,\gamma)^*.
</math>
 
In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span
[[irreducible representations]] of the isomorphic [[Lie algebra|Lie algebra's]] generated by  <math>\{\mathcal{J}_i\}</math> and <math>\{-\mathcal{P}_i\}</math>.
 
An important property of the Wigner D-matrix follows from the commutation of
<math> \mathcal{R}(\alpha,\beta,\gamma) </math> with the [[T-symmetry#Time reversal in quantum mechanics|time reversal operator]]
<math>T\,</math>,
:<math>
\langle jm' | \mathcal{R}(\alpha,\beta,\gamma)| jm \rangle =
\langle jm' | T^{\,\dagger} \mathcal{R}(\alpha,\beta,\gamma) T| jm \rangle =
(-1)^{m'-m} \langle j,-m' | \mathcal{R}(\alpha,\beta,\gamma)| j,-m \rangle^*,
</math>
or
:<math>
D^j_{m'm}(\alpha,\beta,\gamma) = (-1)^{m'-m} D^j_{-m',-m}(\alpha,\beta,\gamma)^*.
</math> 
Here we used that <math>T\,</math> is anti-unitary (hence the complex conjugation after moving
<math>T^\dagger\,</math> from ket to bra), <math> T | jm \rangle = (-1)^{j-m} | j,-m \rangle</math> and <math>(-1)^{2j-m'-m} = (-1)^{m'-m}</math>.
 
== Orthogonality relations ==
The Wigner D-matrix elements <math>D^j_{mk}(\alpha,\beta,\gamma)</math> form a complete set
of orthogonal functions of the Euler angles <math>\alpha</math>, <math>\beta,</math> and <math>\gamma</math>:
:<math>
  \int_0^{2\pi} d\alpha \int_0^\pi \sin \beta d\beta \int_0^{2\pi} d\gamma \,\,
  D^{j'}_{m'k'}(\alpha,\beta,\gamma)^\ast D^j_{mk}(\alpha,\beta,\gamma) =
  \frac{8\pi^2}{2j+1} \delta_{m'm}\delta_{k'k}\delta_{j'j}.
</math>
 
This is a special case of the [[Schur orthogonality relations]].
 
== Kronecker product of Wigner D-matrices, Clebsch-Gordan series ==
The set of [[Kronecker product]] matrices
:<math>
\mathbf{D}^j(\alpha,\beta,\gamma)\otimes \mathbf{D}^{j'}(\alpha,\beta,\gamma)
</math>
forms a reducible matrix representation of the groups SO(3) and SU(2). Reduction into irreducible components is by the following equation:
:<math>
  D^j_{m k}(\alpha,\beta,\gamma) D^{j'}_{m' k'}(\alpha,\beta,\gamma) =
  \sum_{J=|j-j'|}^{j+j'} \sum_{M=-J}^J \sum_{K=-J}^J \langle j m j' m' | J M \rangle
              \langle j k j' k' | J K \rangle
  D^J_{M K}(\alpha,\beta,\gamma)
</math>
The symbol <math>\langle j m j' m' | J M \rangle</math> is a
[[Clebsch-Gordan coefficient]].
 
== Relation to spherical harmonics and Legendre polynomials ==
For integer values of <math>l</math>, the D-matrix elements with second index equal to zero are proportional
to [[spherical harmonics]] and [[associated Legendre polynomials]], normalized to unity and with Condon and Shortley phase convention:
:<math>
D^{\ell}_{m 0}(\alpha,\beta,0) = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^{m*} (\beta, \alpha ) = \sqrt{\frac{(\ell-m)!}{(\ell+m)!}}  \, P_\ell^m ( \cos{\beta} ) \, e^{-i m \alpha }
</math>
This implies the following relationship for the d-matrix:
:<math>
d^{\ell}_{m 0}(\beta) = \sqrt{\frac{(\ell-m)!}{(\ell+m)!}}  \, P_\ell^m ( \cos{\beta} )
</math>
When both indices are set to zero, the Wigner D-matrix elements are given by ordinary [[Legendre polynomials]]:
:<math>
  D^{\ell}_{0,0}(\alpha,\beta,\gamma) = d^{\ell}_{0,0}(\beta) = P_{\ell}(\cos\beta).
</math>
 
In the present convention of Euler angles, <math>\alpha</math> is
a longitudinal angle and  <math>\beta</math> is a colatitudinal angle (spherical polar angles
in the physical definition of such angles). This is one of the reasons that the ''z''-''y''-''z''
[[Euler_angles#Conventions|convention]] is used frequently in molecular physics.
From the time-reversal property of the Wigner D-matrix follows immediately
:<math>
\left( Y_{\ell}^m \right) ^* = (-1)^m Y_{\ell}^{-m}.
</math>
There exists a more general relationship to the [[spin-weighted spherical harmonics]]:
:<math>
D^{\ell}_{-m s}(\alpha,\beta,-\gamma) =(-1)^m \sqrt\frac{4\pi}{2{\ell}+1} {}_sY_{{\ell}m}(\beta,\alpha) e^{is\gamma}.
</math>
 
== Relation to Bessel functions ==
In the limit when <math>\ell \gg m, m^\prime</math> we have <math>D^\ell_{mm^\prime}(\alpha,\beta,\gamma) \approx e^{-im\alpha-im^\prime\gamma}J_{m-m^\prime}(\ell\beta)</math> where <math>J_{m-m^\prime}(\ell\beta)</math> is the [[Bessel function]] and <math> \ell\beta</math> is finite.
 
== List of d-matrix elements ==
Using sign convention of Wigner, et al. the d-matrix elements for ''j'' = 1/2, 1, 3/2, and 2 are given below. 
 
for ''j'' = 1/2
*<math>d_{1/2,1/2}^{1/2} = \cos (\theta/2)</math>
*<math>d_{1/2,-1/2}^{1/2} = -\sin (\theta/2)</math>
 
for ''j'' = 1
*<math>d_{1,1}^{1} = \frac{1+\cos \theta}{2}</math>
*<math>d_{1,0}^{1} = \frac{-\sin \theta}{\sqrt{2}}</math>
*<math>d_{1,-1}^{1} = \frac{1-\cos \theta}{2}</math>
*
*<math>d_{0,0}^{1} = \cos \theta</math>
 
 
for ''j'' = 3/2
*<math>d_{3/2,3/2}^{3/2} = \frac{1+\cos \theta}{2} \cos \frac{\theta}{2}</math>
*<math>d_{3/2,1/2}^{3/2} = -\sqrt{3} \frac{1+\cos \theta}{2} \sin \frac{\theta}{2}</math>
*<math>d_{3/2,-1/2}^{3/2} = \sqrt{3} \frac{1-\cos \theta}{2} \cos \frac{\theta}{2}</math>
*<math>d_{3/2,-3/2}^{3/2} = - \frac{1-\cos \theta}{2} \sin \frac{\theta}{2}</math>
*
*<math>d_{1/2,1/2}^{3/2} = \frac{3\cos \theta - 1}{2} \cos \frac{\theta}{2}</math>
*<math>d_{1/2,-1/2}^{3/2} = - \frac{3\cos \theta + 1}{2} \sin \frac{\theta}{2}</math>
 
for ''j'' = 2  <ref>{{cite journal | doi = 10.1002/cmr.a.10061 | author = Edén, M.
| title = Computer simulations in solid-state NMR. I. Spin dynamics theory| journal = Concepts Magn. Reson.| volume=17A| issue=1| pages=117–154| year=2003|}}</ref>
*<math>d_{2,2}^{2} = \frac{1}{4}\left(1 +\cos \theta\right)^2</math>
*<math>d_{2,1}^{2} = -\frac{1}{2}\sin \theta \left(1 + \cos \theta\right)</math>
*<math>d_{2,0}^{2} = \sqrt{\frac{3}{8}}\sin^2 \theta</math>
*<math>d_{2,-1}^{2} = -\frac{1}{2}\sin \theta \left(1 - \cos \theta\right)</math>
*<math>d_{2,-2}^{2} = \frac{1}{4}\left(1 -\cos \theta\right)^2</math>
*
*<math>d_{1,1}^{2} = \frac{1}{2}\left(2\cos^2\theta + \cos \theta-1 \right)</math>
*<math>d_{1,0}^{2} = -\sqrt{\frac{3}{8}} \sin 2 \theta</math>
*<math>d_{1,-1}^{2} = \frac{1}{2}\left(- 2\cos^2\theta + \cos \theta +1 \right)</math>
*
*<math>d_{0,0}^{2} = \frac{1}{2} \left(3 \cos^2 \theta - 1\right)</math>
 
Wigner d-matrix elements with swapped lower indices are found with the relation:
:<math>d_{m', m}^j = (-1)^{m-m'}d_{m, m'}^j = d_{-m,-m'}^j</math>.
 
== See also ==
* [[Clebsch–Gordan coefficients]]
* [[Tensor operator]]
* [[Symmetries in quantum mechanics]]
 
==References==
<!-- ----------------------------------------------------------
  See http://en.wikipedia.org/wiki/Wikipedia:Footnotes for a
  discussion of different citation methods and how to generate
  footnotes using the<ref>, </ref> and  <reference /> tags
----------------------------------------------------------- -->
{{Reflist}}
 
==External links==
* [http://pdg.lbl.gov/2008/reviews/clebrpp.pdf PDG Table of Clebsch-Gordon Coefficients, Spherical Harmonics, and d-Functions]
 
[[Category:Representation theory of Lie groups]]
[[Category:Matrices]]
[[Category:Special hypergeometric functions]]
[[Category:Rotational symmetry]]

Latest revision as of 20:29, 11 July 2014

Hi there. Let me begin by introducing the writer, her title is Sophia. My day occupation is an invoicing officer but I've already applied for another one. To perform lacross is the thing I love most of all. Some time in the past he chose to live in North Carolina and he doesn't strategy on changing it.

my web page: free tarot readings; srncomm.com,