|
|
| Line 1: |
Line 1: |
| {{lowercase}}
| | What improved tool to help you you stay on track this year than a sharp looking organizer. Hermes purses and scarves are famous, but simple examples of a Brand which has been built from scratch, painstakingly after a while and by being extremely protective of distribution channels for his or her limited production, hand crafted products. Sweet arm candy is dangling from every corner of summer 2011 fashion. Tory Burch is one in the most fashionable ladies fashion brand in America. because we've got the right to do lots of issues,along with all the most thrilling is we are in a position to obtain lots of our favorite items. <br><br><br><br>tory burch wallet saleWear start using machine to try the particular the washing. To get one of the most from heels, it's recommended to practice walking included before putting them on out. Consignment stores really are a great way to be stylish without spending a ton of money. I have experienced my best love before me, I did right treasure it. Vitamin C is really a nutrient which has been demonstrated to use a substantial influence on human health. <br><br>tory burch handbags saleWe have in mind the Tory Burch Handbags are fit to the young people particularly the young ladies and also the teenagers. Associated most with bringing back the charm bracelet, their particular metal and gemstone beads also allow women to customize necklaces, rings, earrings and bracelets. Jimmy Choo Outlet They provide a wide range a fabulous bouquets together with bunches you may choose and maybe they aren't necessarily pricey in anyway. Harcombe allows that vegetables can be a great addition towards the diet ' if served in butter to offer the fat-soluble vitamins they contain ' but. Some type of candy like M&M's, mints, Hershey's Kisses (again you'll be able to match your candy color for a theme). <br><br><br><br>tory burch walletscom and Better Homes and Garden have cute crafts that you could make using your children or grandchildren. And although this function has being retained through the modern designers, some [https://www.vocabulary.com/dictionary/improvements improvements] are actually made to make garment more fashionable and appealing to the modern woman. Tory Burch, the famed New York dressmaker, will bring a downtown preppy vibe to South - Park. The stylish sandal, raised high with a rustic-looking cork wedge, is held by rounded straps of various leathers. [http://www.bbc.Co.uk/search/?q=Bi-fold Bi-fold] wallets, for the other hand, only folds in half. <br><br>tory burch saleOlivia has recentl tweaked clearl to make sure ou Secretar about Immunit Walternate (Kim Chevalier) experiments of our own couple of ears best that this There Olivia,[http://www.pcs-systems.co.uk/Images/celinebag.aspx Celine Bag Online] Bags Louis Vuitton Shoes alias Bolivia (furthermore Torv). Still, it's best to come to be discreet along with all the embellishments, rather than just produce over-decorating all of the running sneakers. Tory Burch males Leopard City Zip Tote Camel Leopard Print in 2009 are loved by countless layout males also it will last for 2010 despite belonging inside the direction in the easy actuality that within of belonging in the direction of the layout world. It could also aid in posture, forcing the wearer to handle the body more upright and provides them a much more confident stride. The two products that have grown to be the trademark of Burberry are their wide variety of perfumes in addition to their check bags. <br><br>tory burch pursesStill, watch as a possible accessory is demand especially for men who don't prefer to use bracelets. The enterprise might be grown at a pace that is certainly more easily handled by thinly resourced entrepreneurs. A quick search on line for "poems about mom" will arrive an endless selection of selections which you are able to then cut and paste into your individual do-it-yourself book; just be sure to credit the authors. Lucky Brand name Fly from the Night time Leather Hobo: Drawstring bags day back for the 30s whenever they ended up used to handle wine bottles. Sighing, I groped around my Moleskin notebook, my keys, a couple packs of Trident gum and my Mac lipgloss. <br><br>tory burch handbags outletas well as stealing content Web e-mail lists, and looking for Web addresses. This summer months sees the wedge shoe return with stunning colors and sensational towering heights. An peanut butter let alone jam pendant is additionall a interesting equipment to get lovers. You can Lv Monogram Speedy 20 intended for $199 or Louis Vuitton Immediate 25 for $100 tiny websites. Almost any set out to end up getting periodic glimpses involved with Lagoon Athabaska spanning not known wetlands together with crushed stone bars. |
| {{See also|p–n junction|Diode#Semiconductor diodes}}
| |
| This article provides a more detailed explanation of p–n diode behavior than that found in the articles [[p–n junction]] or [[diode]].
| |
| | |
| The figure shows two of the many possible structures used for ''p–n'' semiconductor diodes, both adapted to increase the voltage the devices can withstand in reverse bias. The top structure uses a mesa to avoid a sharp curvature of the ''p<sup>+</sup>-''region next to the adjoining ''n-''layer. The bottom structure uses a lightly doped ''p-''guard-ring at the edge of the sharp corner of the ''p<sup>+</sup>-''layer to spread the voltage out over a larger distance and reduce the electric field. (Superscripts like ''n<sup>+</sup>'' or ''n<sup>−</sup>'' refer to heavier or lighter impurity doping levels.)
| |
| | |
| [[File:Two diode structures.png|thumb|200px|Mesa diode structure (top) and planar diode structure with guard-ring (bottom).]]
| |
| A '''p–n diode''' is a type of two-terminal [[semiconductor diode]] based upon the [[p–n junction]] that conducts current in only one direction, made by joining a ''p''-type semiconducting layer to an ''n''-type semiconducting layer. For a discussion of dopant impurities and the terminology ''p-'' and ''n-''type. see [[Doping (semiconductor)]].
| |
| | |
| ==Electrical behavior==
| |
| [[File:Nonideal diode current-voltage behavior.png|thumb|250px|Nonideal ''p–n'' diode current-voltage characteristics.]]
| |
| The ideal diode has zero resistance for the ''forward bias polarity'', and infinite resistance (conducts zero current) for the ''reverse voltage polarity''. In other words, the semiconductor diode acts as an ''[[Rectifier|electrical rectifier]]''.
| |
| | |
| The semiconductor diode is not ideal. As shown in the figure, the diode does not conduct appreciably until a nonzero ''knee voltage'' (also called the ''turn-on voltage'' or the ''cut-in voltage'') is reached. Above this voltage the slope of the current-voltage curve is not infinite (on-resistance is not zero). In the reverse direction the diode conducts a nonzero leakage current (exaggerated by a smaller scale in the figure) and at a sufficiently large reverse voltage below the ''breakdown voltage'' the current increases very rapidly with more negative reverse voltages.
| |
| | |
| As shown in the figure, the ''on'' and ''off'' resistances are the reciprocal slopes of the current-voltage characteristic at a selected bias point:
| |
| :<math> r_D = \left . \frac {\Delta v_D}{\Delta i_D} \right| _{v_D=V_{BIAS}} \ , </math>
| |
| where ''r<sub>D</sub>'' is the resistance and ''Δi<sub>D</sub>'' is the current change corresponding to the diode voltage change ''Δv<sub>D</sub>'' at the bias {{nowrap|''v<sub>D</sub><nowiki>=</nowiki>V<sub>BIAS</sub>''.}}
| |
| | |
| ==Operation==
| |
| [[Image:PN Junction Open Circuited.svg|thumb|250px|right|An abrupt p–n diode made by doping [[silicon]].]]
| |
| Here, the operation of the abrupt ''p–n'' diode is considered. By "abrupt" is meant that the p- and n-type doping exhibit a [[step function]] discontinuity at the plane where they encounter each other. The objective is to explain the various bias regimes in the figure displaying current-voltage characteristics. Operation is described using [[band-bending diagram]]s that show how the lowest conduction band energy and the highest valence band energy vary with position inside the diode under various bias conditions. For additional discussion, see the articles [[Semiconductor#Effect_on_band_structure|Semiconductor]] and [[Band diagram]].
| |
| | |
| ===Zero bias===
| |
| [[File:Pn-junction zero bias.png|thumb|300px|[[Band-bending diagram]] for ''p–n'' diode at zero applied voltage. The depletion region is shaded.]]
| |
| The figure shows a band bending diagram for a ''p–n'' diode; that is, the band edges for the conduction band (upper line) and the valence band (lower line) are shown as a function of position on both sides of the junction between the ''p''-type material (left side) and the ''n''-type material (right side). When a ''p''-type and an ''n''-type region of the same semiconductor are brought together and the two diode contacts are short-circuited, the [[Fermi level|Fermi half-occupancy level]] (dashed horizontal straight line) is situated at a constant level. This level ensures that in the field-free bulk on both sides of the junction the hole and electron occupancies are correct. (So, for example, it is not necessary for an electron to leave the ''n''-side and travel to the ''p''-side through the short circuit to adjust the occupancies.)
| |
| | |
| However, a flat Fermi level requires the bands on the ''p''-type side to move higher than the corresponding bands on the ''n''-type side, forming a step or barrier in the band edges, labeled ''φ''<sub>B</sub>. This step changes the electron density on the ''n-''side to become a [[Boltzmann factor]] exp(−''φ''<sub>B</sub>/''V''<sub>th</sub>) smaller on the ''p''-side, to correspond to the lower electron density in ''p''-region. Here the symbol ''V''<sub>th</sub> denotes the ''thermal voltage'', defined as ''V''<sub>th</sub> = ''k''<sub>B</sub>''T''/''q''. At ''T'' = 290 [[Kelvin (unit)|kelvin]]s (room temperature), the thermal voltage is approximately 25 mV. Similar considerations apply for the effect of the barrier upon the hole density in the ''n''-region. It so happens that the ''pn''-product of the carrier densities is
| |
| :<math>pn=p_B n_B\, e^{-\varphi_\mathrm{B}/V_\mathrm{th}}</math>
| |
| at any position within the diode at equilibrium.<ref name=Sparkes/> Here ''p''<sub>B</sub> and ''n''<sub>B</sub> are the bulk majority carrier densities on the ''p''-side and the ''n''-side, respectively.
| |
| | |
| As a result of this step in band edges, a ''[[depletion region]]'' near the junction becomes depleted of both holes and electrons, forming an insulating region with almost no ''mobile'' charges. There are, however, ''fixed, immobile'' charges due to dopant ions. The near absence of mobile charge in the depletion layer means that the mobile charges present are insufficient to balance the immobile charge contributed by the dopant ions: a negative charge on the ''p''-type side due to acceptor dopant and as a positive charge on the ''n''-type side due to donor dopant. Because of this charge there is an electric field in this region, as determined by [[Poisson's equation]]. The width of the depletion region adjusts so the negative acceptor charge on the ''p''-side exactly balances the positive donor charge on the ''n''-side, so there is no electric field outside the depletion region on either side.
| |
| | |
| In this band configuration no voltage is applied and no current flows through the diode. To force current through the diode a ''forward bias'' must be applied, as described next.
| |
| | |
| ===Forward bias===
| |
| [[File:Pn-junction forward bias.png|thumb|180px|[[Band-bending diagram]] for ''p–n'' diode in forward bias. Diffusion drives carriers across the junction.]]
| |
| [[File:Diode quasi-fermi levels.png|thumb|180px|[[Quasi-Fermi level]]s and carrier densities in forward biased ''p–n-'' diode. The figure assumes recombination is confined to the regions where majority carrier concentration is near the bulk values, which is not accurate when recombination-generation centers in the field region play a role.]]
| |
| In forward bias, electrons are injected into the ''p-''material and holes into the ''n-''material. The electrons in the ''n''-type material are called ''majority'' carriers on that side, but any that make it to the ''p''-type side are called ''minority'' carriers. The same descriptors apply to holes: they are majority carriers on the ''p''-type side, and minority carriers on the ''n''-type side.
| |
| | |
| A forward bias separates the two bulk half-occupancy levels by the amount of the applied voltage, which lowers the separation of the ''p''-type bulk band edges to be closer in energy to those of the ''n''-type. As shown in the diagram, the step in band edges is reduced by the applied voltage to ''φ<sub>B</sub>−v<sub>D</sub>''. (The band bending diagram is made in units of volts, so no electron charge appears to convert ''v<sub>D</sub>'' to energy.)
| |
| | |
| Under forward bias, a ''[[diffusion current]]'' flows (that is a current driven by a concentration gradient) of holes from the ''p''-side into the ''n-''side, and of electrons in the opposite direction from the ''n''-side to the ''p-''side. The gradient driving this transfer is set up as follows: in the bulk distant from the interface, minority carriers have a very low concentration compared to majority carriers, for example, electron density on the ''p''-side (where they are minority carriers) is a factor {{nowrap|exp(−''φ<sub>B</sub>''/''V<sub>th</sub>'')}} lower than on the ''n-''side (where they are majority carriers). On the other hand, near the interface, application of voltage ''v<sub>D</sub>'' reduces the step in band edges and increases minority carrier densities by a Boltzmann factor exp(''v<sub>D</sub>/V<sub>th</sub>'') above the bulk values. Within the junction, the ''pn-''product is increased above the equilibrium value to:<ref name=Sparkes/>
| |
| | |
| :<math>pn=\left(p_B n_B \ e^{-\varphi_B/V_{th}}\right)\ e^{v_D/V_{th}} \ . </math>
| |
| | |
| The gradient driving the diffusion is then the difference between the large excess minority carrier densities at the barrier and the low densities in the bulk, and that gradient drives diffusion of minority carriers from the interface into the bulk. The injected minority carriers are reduced in number as they travel into the bulk by ''recombination'' mechanisms that drive the excess concentrations toward the bulk values. | |
| | |
| Recombination can occur by direct encounter with a majority carrier, annihilating both carriers, or through a [[Carrier generation and recombination|''recombination-generation'' center]], a defect that alternately traps holes and electrons, assisting recombination. The minority carriers have a limited ''[[Carrier lifetime|lifetime]]'', and this lifetime in turn limits how far they can diffuse from the majority carrier side into the minority carrier side, the so-called ''[[Fick's_laws_of_diffusion#Example_solution_in_one_dimension:_diffusion_length|diffusion length]]''. In the [[Light Emitting Diode|LED]] recombination of electrons and holes is accompanied by emission of light of a wavelength related to the energy gap between valence and conduction bands, so the diode converts a portion of the forward current into light.
| |
| | |
| The half-occupancy lines for holes and electrons cannot remain flat throughout the device as they are in equilibrium, but become ''[[quasi-Fermi level]]s'' that vary with position. As shown in the figure, the electron quasi-Fermi level shifts with position, from the half-occupancy equilibrium Fermi level in the ''n-''bulk, to the half-occupancy equilibrium level for holes deep in the ''p-''bulk. The hole quasi-Fermi level does the reverse. The two quasi-Fermi levels do not coincide except deep in the bulk materials.
| |
| | |
| The figure shows the majority carrier densities drop from the majority carrier density levels ''n<sub>B</sub>'', ''p<sub>B</sub>'' in their respective bulk materials, to a level a factor exp(−(''φ<sub>B</sub>−v<sub>D</sub>'')/''V<sub>th</sub>'') smaller at the top of the barrier, which is reduced from the equilibrium value ''φ<sub>B</sub>'' by the amount of the forward diode bias ''v<sub>D</sub>''. Because this barrier is located in the oppositely doped material, the injected carriers at the barrier position are now minority carriers. As recombination takes hold, the minority carrier densities drop with depth to their equilibrium values for bulk minority carriers, a factor exp(−''φ<sub>B</sub>''/''V<sub>th</sub>'') smaller than their bulk densities ''n<sub>B</sub>'', ''p<sub>B</sub>'' as majority carriers before injection. At this point the quasi-Fermi levels rejoin the bulk Fermi level positions.
| |
| | |
| The reduced step in band edges also means that under forward bias the depletion region narrows as holes are pushed into it from the ''p''-side and electrons from the ''n''-side.
| |
| | |
| In the simple ''p–n'' diode the forward current increases exponentially with forward bias voltage due to the exponential increase in carrier densities, so there is always some current at even very small values of applied voltage. However, if one is interested in some particular current level, it will require a "knee" voltage before that current level is reached. For example, a very common choice in texts about circuits using silicon diodes is ''V<sub>Knee</sub>'' = 0.7 V.<ref name=cut-in/> Above the knee, the current continues to increase exponentially. Some special diodes, such as some varactors, are designed deliberately to maintain a low current level up to some knee voltage in the forward direction.
| |
| | |
| ===Reverse bias===
| |
| {{See also|Zener diode|Photodiode}}
| |
| [[File:Pn-junction reverse bias.png|thumb|180px|Band-bending for ''p–n'' diode in reverse bias]]
| |
| [[File:Quasi-Fermi levels.png|thumb|180px|[[Quasi-Fermi level]]s in reverse-biased ''p–n'' diode.]]
| |
| In reverse bias the occupancy level for holes again tends to stay at the level of the bulk ''p''-type semiconductor while the occupancy level for electrons follows that for the bulk ''n-''-type. In this case, the ''p''-type bulk band edges are raised relative to the ''n''-type bulk by the reverse bias ''v<sub>R</sub>'', so the two bulk occupancy levels are separated again by an energy determined by the applied voltage. As shown in the diagram, this behavior means the step in band edges is increased to {{nowrap|''φ<sub>B</sub>+v<sub>R</sub>''}}, and the depletion region widens as holes are pulled away from it on the ''p''-side and electrons on the ''n''-side.
| |
| | |
| When the reverse bias is applied, the electric field in the depletion region is increased, pulling the electrons and holes further apart than in the zero bias case. Thus, any current that flows is due to the very weak process of carrier generation inside the depletion region due to ''generation-recombination defects'' in this region. That very small current is the source of the leakage current under reverse bias. In the [[photodiode]], reverse current is introduced using creation of holes and electrons in the depletion region by incident light, thus converting a portion of the incident light into an electric current.
| |
| | |
| When the reverse bias becomes very large, reaching the breakdown voltage, the generation process in the depletion region accelerates leading to an ''avalanche'' condition which can cause runaway and destroy the diode.
| |
| | |
| ===Diode law===
| |
| The DC current-voltage behavior of the ideal ''p–n'' diode is governed by the [[Shockley diode equation]]:<ref name=Grebennikov/>
| |
| | |
| :<math>i_\mathrm{D} = I_\mathrm{R} \left(e^{v_\mathrm{D}/V_\mathrm{th}}-1\right), </math>
| |
| where ''v''<sub>D</sub> is the DC voltage across the diode and ''I''<sub>R</sub> is the ''reverse saturation current'', the current that flows when the diode is reverse biased (that is, ''v''<sub>D</sub> is large and negative). The quantity ''V''<sub>th</sub> is the ''thermal voltage'' defined as ''V''<sub>th</sub> = ''k''<sub>B</sub>''T''/''q''. This is approximately equal to 25 mV at ''T'' = 290 [[Kelvin (unit)|kelvin]]s.
| |
| | |
| This equation does not model the non-ideal behavior such as excess reverse leakage or breakdown phenomena. In many practical diodes this equation must be modified to read
| |
| | |
| :<math>i_D=I_R \left(e^{v_\mathrm{D}/n V_\mathrm{th}}-1\right), </math>
| |
| | |
| where ''n'' is an ''ideality factor'' introduced to model a slower rate of increase than predicted by the ideal diode law. Using this equation, the diode ''on-''resistance is
| |
| | |
| :<math>r_\mathrm{D} = \frac{1}{di_\mathrm{D}/dv_\mathrm{D}} \approx \frac{nV_\mathrm{th}}{i_\mathrm{D}} , </math>
| |
| | |
| exhibiting a lower resistance the higher the current.
| |
| | |
| ===Capacitance===
| |
| {{See also|Varactor}}
| |
| The depletion layer between the ''n''- and ''p''-sides of a ''p–n''-diode serves as an insulating region that separates the two diode contacts. Thus, the diode in reverse bias exhibits a ''depletion-layer capacitance'', sometimes more vaguely called a ''junction capacitance'', analogous to a [[parallel plate capacitor]] with a dielectric spacer between the contacts. In reverse bias the width of the depletion layer is widened with increasing reverse bias ''v<sub>R</sub>'', and the capacitance is accordingly decreased. Thus, the junction serves as a voltage-controllable capacitor. In a simplified one-dimensional model, the junction capacitance is: | |
| | |
| :<math>C_J = \kappa \varepsilon_0 \frac{A}{w(v_R)} \ , </math>
| |
| | |
| with ''A'' the device area, ''κ'' the relative semiconductor dielectric permittivity, ''ε<sub>0</sub>'' the [[electric constant]], and ''w'' the depletion width (thickness of the region where mobile carrier density is negligible).
| |
| | |
| In forward bias, besides the above depletion-layer capacitance, minority carrier charge injection and diffusion occurs. A ''[[diffusion capacitance]]'' exists expressing the change in minority carrier charge that occurs with a change in forward bias. In terms of the stored minority carrier charge, the diode current ''i<sub>D</sub>'' is:
| |
| :<math>i_D = \frac{Q_D}{\tau_T} \ , </math>
| |
| where ''Q<sub>D</sub>'' is the charge associated with diffusion of minority carriers, and ''τ<sub>T</sub>'' is the ''transit time'', the time taken for the minority charge to transit the injection region. Typical values for transit time are 0.1–100 ns.<ref name=Arora/> On this basis, the diffusion capacitance is calculated to be:
| |
| | |
| :<math>C_D = \frac {dQ_D}{dv_D} = \tau_T \frac {d i_D}{dv_D} = \frac{i_D \tau_T}{V_{th}} \ . </math>
| |
| | |
| Generally speaking, for usual current levels in forward bias, this capacitance far exceeds the depletion-layer capacitance.
| |
| | |
| ===Transient response===
| |
| [[File:PN-diode small-signal circuit2.png|thumb||200px|Small-signal circuit for ''p–n ''diode driven by a current signal represented as a [[Norton's theorem|Norton source]].]]
| |
| The diode is a highly non-linear device, but for small-signal variations its response can be analyzed using a ''small-signal circuit'' based upon the DC bias about which the signal is imagined to vary. The equivalent circuit is shown at the right for a diode driven by a [[Norton's theorem|Norton source]]. Using [[Kirchhoff's current law]] at the output node:
| |
| | |
| :<math>I_S=\left(j\omega (C_J+C_D) + \frac{1}{r_D} +\frac{1}{R_S} \right) V_O \ , </math>
| |
| | |
| with ''C<sub>D</sub>'' the diode diffusion capacitance, ''C<sub>J</sub>'' the diode junction capacitance (the depletion layer capacitance) and ''r<sub>D</sub>'' the diode resistance, all at the selected quiescent bias point or Q-point. The output voltage provided by this circuit is then:
| |
| :<math>\frac{V_O}{I_S} =\frac{(R_S \mathit{\parallel} r_D)}{1+j\omega (C_D+C_J)(R_S \mathit{\parallel}r_D)} \ , </math>
| |
| with (''R<sub>S</sub>||r<sub>D</sub>'') the parallel combination of ''R<sub>S</sub>'' and ''r<sub>D</sub>''. This ''transresistance amplifier'' exhibits a ''corner frequency'', denoted ''f<sub>C</sub>'':
| |
| :<math>f_C = \frac{1}{2\pi (C_D+C_J)(R_S \mathit{\parallel}r_D)} \ , </math>
| |
| and for frequencies ''f >> f<sub>C</sub>'' the gain rolls off with frequency as the capacitors short-circuit the resistor ''r<sub>D</sub>''. Assuming, as is the case when the diode is turned on, that ''C<sub>D</sub>''>>''C<sub>J</sub>'' and ''R<sub>S</sub>''>>''r<sub>D</sub>'', the expressions found above for the diode resistance and capacitance provide:
| |
| :<math>f_C = \frac{1}{2 \pi n\tau_T} \ , </math>
| |
| which relates the corner frequency to the diode transit time ''τ<sub>T</sub>''.
| |
| | |
| For diodes operated in reverse bias, ''C<sub>D</sub>'' is zero and the term ''corner frequency'' often is replaced by ''cutoff frequency''. In any event, in reverse bias the diode resistance becomes quite large, although not infinite as the ideal diode law suggests, and the assumption that it is less than the Norton resistance of the driver may not be accurate. The junction capacitance is small and depends upon the reverse bias ''v<sub>R</sub>''. The cutoff frequency is then:
| |
| :<math>f_C = \frac{1}{2\pi C_J(R_S \mathit{\parallel}r_D)} \ , </math>
| |
| and varies with reverse bias because the width ''w(v<sub>R</sub>)'' of the insulating region depleted of mobile carriers increases with increasing diode reverse bias, reducing the capacitance.<ref name=varactor/> | |
| | |
| ==See also==
| |
| * [[p-i-n diode]]
| |
| | |
| ==Notes==
| |
| {{reflist|refs=
| |
| | |
| <ref name=Arora>
| |
| {{cite book |title=Mosfet modeling for VLSI simulation: theory and practice |author=Narain Arora |page= 539 |url=http://books.google.com/books?id=SkT2xOuvpuYC&pg=PA539 |isbn=981-256-862-X |year=2007 |publisher=World Scientific}}
| |
| {{cite book |title=Physics of semiconductor devices |author=Jean-Pierre Colinge, Cynthia A. Colinge |url=http://books.google.com/books?id=ZcDE-ENKh2gC&pg=PA149 |page= 149 |isbn=1-4020-7018-7 |year=2002 |edition=2nd ed |publisher=Springer}}
| |
| | |
| </ref>
| |
| | |
| <ref name=cut-in>
| |
| | |
| Naturally, this voltage depends upon the selected current level. This voltage for the ''p–n'' diode is taken variously as 0.7 V and 0.5 V; see {{cite book |title=Microelectronic circuits |author=AS Sedra and KF Smith |publisher=Oxford University Press |edition=4th ed |year=1998 |page=134 & Figure 3.8 |isbn=0-19-511663-1 |chapter=Chapter 3: Diodes |url=http://www.amazon.com/Microelectronic-Circuits-Oxford-Electrical-Engineering/dp/0195116631/ref=sr_1_1?s=books&ie=UTF8&qid=1294773658&sr=1-1#reader_0195116631 }}.
| |
| | |
| </ref>
| |
| | |
| <ref name=Grebennikov>
| |
| | |
| {{cite book |title=RF and Microwave Transmitter Design |author=Andrei Grebennikov |url=http://books.google.com/books?id=nGLdHfULzhYC&pg=PA59 |page= 59 |chapter=§2.1.1: Diodes: Operational principle |isbn=0-470-52099-X |year=2011 |publisher=J Wiley & Sons}}
| |
| | |
| </ref>
| |
| | |
| <ref name=Sparkes>
| |
| {{cite book |title=Semiconductor Devices |author=John Sparkes |url=http://books.google.com/books?id=iMSnDxI7JNsC&pg=PA78 |page=78 |isbn=0-7487-7382-7 |year=1994 |edition=2nd ed |publisher=CRC Press}}
| |
| </ref>
| |
| | |
| <ref name=varactor>
| |
| The ''varactor'' is a ''p–n'' diode operated in reverse bias. See, for example, {{cite book |title=Microwave and Radar Engineering |author=V.S.Bagad |url=http://books.google.com/books?id=8Ou3L4bDhLMC&pg=SA5-PA27 |chapter=§5.8.1 Varactor diode: Working principle |isbn=81-8431-121-4 |publisher=Technical Publications Pune |year=2009 |edition =2nd ed}}
| |
| </ref>
| |
| | |
| }}
| |
| {{citizendium|title=Semiconductor diode}}
| |
| | |
| {{DEFAULTSORT:P-n diode}}
| |
| [[Category:Diodes]]
| |
| [[Category:Semiconductor devices]]
| |
What improved tool to help you you stay on track this year than a sharp looking organizer. Hermes purses and scarves are famous, but simple examples of a Brand which has been built from scratch, painstakingly after a while and by being extremely protective of distribution channels for his or her limited production, hand crafted products. Sweet arm candy is dangling from every corner of summer 2011 fashion. Tory Burch is one in the most fashionable ladies fashion brand in America. because we've got the right to do lots of issues,along with all the most thrilling is we are in a position to obtain lots of our favorite items.
tory burch wallet saleWear start using machine to try the particular the washing. To get one of the most from heels, it's recommended to practice walking included before putting them on out. Consignment stores really are a great way to be stylish without spending a ton of money. I have experienced my best love before me, I did right treasure it. Vitamin C is really a nutrient which has been demonstrated to use a substantial influence on human health.
tory burch handbags saleWe have in mind the Tory Burch Handbags are fit to the young people particularly the young ladies and also the teenagers. Associated most with bringing back the charm bracelet, their particular metal and gemstone beads also allow women to customize necklaces, rings, earrings and bracelets. Jimmy Choo Outlet They provide a wide range a fabulous bouquets together with bunches you may choose and maybe they aren't necessarily pricey in anyway. Harcombe allows that vegetables can be a great addition towards the diet ' if served in butter to offer the fat-soluble vitamins they contain ' but. Some type of candy like M&M's, mints, Hershey's Kisses (again you'll be able to match your candy color for a theme).
tory burch walletscom and Better Homes and Garden have cute crafts that you could make using your children or grandchildren. And although this function has being retained through the modern designers, some improvements are actually made to make garment more fashionable and appealing to the modern woman. Tory Burch, the famed New York dressmaker, will bring a downtown preppy vibe to South - Park. The stylish sandal, raised high with a rustic-looking cork wedge, is held by rounded straps of various leathers. Bi-fold wallets, for the other hand, only folds in half.
tory burch saleOlivia has recentl tweaked clearl to make sure ou Secretar about Immunit Walternate (Kim Chevalier) experiments of our own couple of ears best that this There Olivia,Celine Bag Online Bags Louis Vuitton Shoes alias Bolivia (furthermore Torv). Still, it's best to come to be discreet along with all the embellishments, rather than just produce over-decorating all of the running sneakers. Tory Burch males Leopard City Zip Tote Camel Leopard Print in 2009 are loved by countless layout males also it will last for 2010 despite belonging inside the direction in the easy actuality that within of belonging in the direction of the layout world. It could also aid in posture, forcing the wearer to handle the body more upright and provides them a much more confident stride. The two products that have grown to be the trademark of Burberry are their wide variety of perfumes in addition to their check bags.
tory burch pursesStill, watch as a possible accessory is demand especially for men who don't prefer to use bracelets. The enterprise might be grown at a pace that is certainly more easily handled by thinly resourced entrepreneurs. A quick search on line for "poems about mom" will arrive an endless selection of selections which you are able to then cut and paste into your individual do-it-yourself book; just be sure to credit the authors. Lucky Brand name Fly from the Night time Leather Hobo: Drawstring bags day back for the 30s whenever they ended up used to handle wine bottles. Sighing, I groped around my Moleskin notebook, my keys, a couple packs of Trident gum and my Mac lipgloss.
tory burch handbags outletas well as stealing content Web e-mail lists, and looking for Web addresses. This summer months sees the wedge shoe return with stunning colors and sensational towering heights. An peanut butter let alone jam pendant is additionall a interesting equipment to get lovers. You can Lv Monogram Speedy 20 intended for $199 or Louis Vuitton Immediate 25 for $100 tiny websites. Almost any set out to end up getting periodic glimpses involved with Lagoon Athabaska spanning not known wetlands together with crushed stone bars.