Interbilayer forces in membrane fusion: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Bgwhite
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (9863)
linkfix
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{pp-move-indef}}
Hi, everybody! My name is Moses. <br>It is a little about myself: I live in Poland, my city of Zabrze. <br>It's called often Northern or cultural capital of . I've married 1 years ago.<br>I have two children - a son (Maisie) and the daughter (Williemae). We all like Games Club - Dungeons and Dragons, Monopoly, Etc..<br><br>Here is my blog post; [http://tinyurl.com/oh3punx http://tinyurl.com/oh3punx]
[[File:PI.svg|thumb|280px|The famous mathematical constant [[pi]] (π) is among the most well-known irrational numbers and is much-represented in popular culture]]
In [[mathematics]], an '''irrational number''' is any [[real number]] that cannot be expressed as a ratio ''a''/''b'', where ''a'' and ''b'' are [[integers]] and ''b'' is non-zero.
 
Informally, this means that an irrational number cannot be represented as a simple fraction.  Irrational numbers are those real numbers that cannot be represented as terminating or [[repeating decimal]]s.  As a consequence of [[Cantor's diagonal argument|Cantor's proof]] that the real numbers are [[uncountable]] (and the rationals countable) it follows that [[almost all]] real numbers are irrational.<ref>{{Cite book|last=Cantor|first=Georg|year=1955, 1915|title=Contributions to the Founding of the Theory of Transfinite Numbers|url=http://www.archive.org/details/contributionstot003626mbp|editor=[[Philip Jourdain]]|place=New York|publisher=Dover|isbn= 978-0-486-60045-1 }}</ref>
 
When the [[ratio]] of lengths of two line segments is irrational, the line segments are also described as being ''[[commensurability (mathematics)|incommensurable]]'', meaning they share no measure in common.
 
Perhaps the best-known irrational numbers are: the ratio of a circle's circumference to its diameter [[Pi|π]],  Euler's number [[E (mathematical constant)|e]], the golden ratio [[Golden ratio|φ]], and the [[square root]] of two [[square root of 2|&radic;{{overline|2}}]].<ref>[http://sprott.physics.wisc.edu/Pickover/trans.html The 15 Most Famous Transcendental Numbers]. by [[Clifford A. Pickover]]. URL retrieved 24 October 2007.</ref><ref>http://www.mathsisfun.com/irrational-numbers.html; URL retrieved 24 October 2007.</ref><ref>{{MathWorld|title=Irrational Number|urlname=IrrationalNumber}} URL retrieved 26 October 2007.</ref>
 
== History == <!-- [[History of irrational numbers]] links here -->
[[File:Square root of 2 triangle.svg|right|thumb|The number <math>\scriptstyle\sqrt{2}</math> is irrational.]]
 
It has been suggested that the concept of irrationality was implicitly accepted by [[Indian mathematics|Indian mathematicians]] since the 7th century BC, when [[Manava]] (c. 750 &ndash; 690 BC) believed that the [[square root]]s of numbers such as 2 and 61 could not be exactly determined.<ref>T. K. Puttaswamy, "The Accomplishments of Ancient Indian Mathematicians", pp. 411&ndash;2, in {{Cite book|title=Mathematics Across Cultures: The History of Non-western Mathematics|editor1-first=Helaine|editor1-last=Selin|editor1-link=Helaine Selin|editor2-first=Ubiratan|editor2-last=D'Ambrosio|year=2000|publisher=[[Springer Science+Business Media|Springer]]|isbn=1-4020-0260-2|ref=harv|postscript=<!--None-->}}.</ref> However, historian [[Carl Benjamin Boyer]]<ref name="Boyer 208">{{cite book|last=Boyer|authorlink=Carl Benjamin Boyer|title=|year=1991|chapter=China and India|quote=It has been claimed also that the first recognition of incommensurables appears in India during the ''Sulbasutra'' period, but such claims are not well substantiated. The case for early Hindu awareness of incommensurable magnitudes is rendered most unlikely by the lack of evidence that Indian mathematicians of that period had come to grips with fundamental concepts.|page=208}}</ref> states that "...such claims are not well substantiated and unlikely to be true."
 
=== Ancient Greece ===
The first proof of the existence of irrational numbers is usually attributed to a [[Pythagoreanism|Pythagorean]] (possibly [[Hippasus|Hippasus of Metapontum]]),<ref>{{cite journal|title=The Discovery of Incommensurability by Hippasus of Metapontum|author=Kurt Von Fritz|journal=The Annals of Mathematics|year=1945|ref=harv}}</ref> who probably discovered them while identifying sides of the [[pentagram]].<ref>{{cite journal|title=The Pentagram and the Discovery of an Irrational Number|journal=The Two-Year College Mathematics Journal|author=James R. Choike|year=1980|ref=harv}}.</ref>
The then-current Pythagorean method would have claimed that there must be some sufficiently small, indivisible unit that could fit evenly into one of these lengths as well as the other. However, Hippasus, in the 5th century BC, was able to deduce that there was in fact no common unit of measure, and that the assertion of such an existence was in fact a contradiction. He did this by demonstrating that if the [[hypotenuse]] of an [[isosceles right triangle]] was indeed [[Commensurability (mathematics)|commensurable]] with a leg, then that unit of measure must be both odd and even, which is impossible. His reasoning is as follows:
 
:* Start with an isosceles right triangle with side lengths of integers ''a'', ''b'', and ''c''. The ratio of the hypotenuse to a leg is represented by ''c'':''b''.
:* Assume ''a'', ''b'', and ''c'' are in the smallest possible terms  (''i.e.'' they have no common factors).
:* By the [[Pythagorean theorem]]: ''c''<sup>2</sup> = ''a''<sup>2</sup>+''b''<sup>2</sup> = ''b''<sup>2</sup>+''b''<sup>2</sup> = 2''b''<sup>2</sup>. (Since the triangle is isosceles, ''a'' = ''b'').
:* Since ''c''<sup>2</sup> = 2''b''<sup>2</sup>, ''c''<sup>2</sup> is divisible by 2, and therefore even.
:* Since ''c''<sup>2</sup> is even, ''c'' must be even.
:* Since ''c'' and ''b'' have no common factors, and ''c'' is even, ''b'' must be odd (if ''b'' were even, ''b'' and ''c'' would have a common factor of 2).
:* Since ''c'' is even, dividing ''c'' by 2 yields an integer. Let ''y'' be this integer (''c'' = 2''y'').
:* Squaring both sides of ''c'' = 2''y'' yields ''c''<sup>2</sup> = (2''y'')<sup>2</sup>, or ''c''<sup>2</sup> = 4''y''<sup>2</sup>.
:* Substituting 4''y''<sup>2</sup> for ''c''<sup>2</sup> in the first equation (''c''<sup>2</sup> = 2''b''<sup>2</sup>) gives us 4''y''<sup>2</sup>= 2''b''<sup>2</sup>.
:* Dividing by 2 yields 2''y''<sup>2</sup> = ''b''<sup>2</sup>.
:* Since ''y'' is an integer, and 2''y''<sup>2</sup> = ''b''<sup>2</sup>, ''b''<sup>2</sup> is divisible by 2, and therefore even.
:* Since ''b''<sup>2</sup> is even, ''b'' must be even.
:* However, we have already asserted that ''b'' must be odd, and ''b'' cannot be both odd and even. This contradiction proves that ''c'' and ''b'' cannot both be integers, and thus the existence of a number that cannot be expressed as a ratio of two integers.<ref>[[Morris Kline|Kline, M.]] (1990). ''Mathematical Thought from Ancient to Modern Times'', Vol. 1. New York: Oxford University Press. (Original work published 1972). p.33.</ref>
 
[[Greek mathematics|Greek mathematicians]] termed this ratio of incommensurable magnitudes ''alogos'', or inexpressible. Hippasus, however, was not lauded for his efforts: according to one legend, he made his discovery while out at sea, and was subsequently thrown overboard by his fellow Pythagoreans “…for having produced an element in the universe which denied the…doctrine that all phenomena in the universe can be reduced to whole numbers and their ratios.”<ref>Kline 1990, p. 32.</ref> Another legend states that Hippasus was merely exiled for this revelation. Whatever the consequence to Hippasus himself, his discovery posed a very serious problem to Pythagorean mathematics, since it shattered the assumption that number and geometry were inseparable&ndash;a foundation of their theory.
 
The discovery of incommensurable ratios was indicative of another problem facing the Greeks: the relation of the discrete to the continuous. Brought into light by [[Zeno of Elea]], who questioned the conception that quantities are discrete and composed of a finite number of units of a given size. Past Greek conceptions dictated that they necessarily must be, for “whole numbers represent discrete objects, and a commensurable ratio represents a relation between two collections of discrete objects.”<ref name="Kline 1990, p.34">Kline 1990, p.34.</ref> However Zeno found that in fact “[quantities] in general are not discrete collections of units; this is why ratios of incommensurable [quantities] appear….[Q]uantities are, in other words, continuous.”<ref name="Kline 1990, p.34"/> What this means is that, contrary to the popular conception of the time, there cannot be an indivisible, smallest unit of measure for any quantity. That in fact, these divisions of quantity must necessarily be [[Infinity|infinite]]. For example, consider a line segment: this segment can be split in half, that half split in half, the half of the half in half, and so on. This process can continue infinitely, for there is always another half to be split. The more times the segment is halved, the closer the unit of measure comes to zero, but it never reaches exactly zero. This is just what Zeno sought to prove. He sought to prove this by formulating [[Zeno's paradoxes|four paradoxes]], which demonstrated the contradictions inherent in the mathematical thought of the time. While Zeno’s paradoxes accurately demonstrated the deficiencies of current mathematical conceptions, they were not regarded as proof of the alternative. In the minds of the Greeks, disproving the validity of one view did not necessarily prove the validity of another, and therefore further investigation had to occur.
 
The next step was taken by [[Eudoxus of Cnidus]], who formalized a new theory of proportion that took into account commensurable as well as incommensurable quantities. Central to his idea was the distinction between magnitude and number. A magnitude “...was not a number but stood for entities such as line segments, angles, areas, volumes, and time which could vary, as we would say, continuously. Magnitudes were opposed to numbers, which jumped from one value to another, as from 4 to 5.”<ref>Kline 1990, p.48.</ref> Numbers are composed of some smallest, indivisible unit, whereas magnitudes are infinitely reducible. Because no quantitative values were assigned to magnitudes, Eudoxus was then able to account for both commensurable and incommensurable ratios by defining a ratio in terms of its magnitude, and proportion as an equality between two ratios. By taking quantitative values (numbers) out of the equation, he avoided the trap of having to express an irrational number as a number. “Eudoxus’ theory enabled the Greek mathematicians to make tremendous progress in geometry by supplying the necessary logical foundation for incommensurable ratios.”<ref>Kline 1990, p.49.</ref>  Book 10 is dedicated to classification of irrational magnitudes.
 
As a result of the distinction between number and magnitude, geometry became the only method that could take into account incommensurable ratios. Because previous numerical foundations were still incompatible with the concept of incommensurability, Greek focus shifted away from those numerical conceptions such as algebra and focused almost exclusively on geometry. In fact, in many cases algebraic conceptions were reformulated into geometrical terms. This may account for why we still conceive of x<sup>2</sup> or x<sup>3</sup> as x squared and x cubed instead of x second power and x third power. Also crucial to Zeno’s work with incommensurable magnitudes was the fundamental focus on deductive reasoning that resulted from the foundational shattering of earlier Greek mathematics. The realization that some basic conception within the existing theory was at odds with reality necessitated a complete and thorough investigation of the axioms and assumptions that comprised that theory. Out of this necessity Eudoxus developed his [[method of exhaustion]], a kind of [[reductio ad absurdum]] that “…established the deductive organization on the basis of explicit axioms…” as well as “…reinforced the earlier decision to rely on deductive reasoning for proof.”<ref>Kline 1990, p.50.</ref> This method of exhaustion is the first step in the creation of calculus.
 
[[Theodorus of Cyrene]] proved the irrationality of the [[Nth root|surds]] of whole numbers up to 17, but stopped there probably because the algebra he used couldn't be applied to the square root of 17.<ref>{{cite journal|title=Theodorus' Irrationality Proofs|author=Robert L. McCabe|journal=Mathematics Magazine|year=1976|ref=harv}}.</ref>
It wasn't until [[Eudoxus of Cnidus|Eudoxus]] developed a theory of proportion that took into account irrational as well as rational ratios that a strong mathematical foundation of irrational numbers was created.<ref>{{cite book|title=The historical development of the calculus|author=Charles H. Edwards|year=1982|publisher=Springer}}</ref>
 
===India===
Geometrical and mathematical problems involving irrational numbers such as square roots were addressed very early during the Vedic period in India and there are references to such calculations in the ''Samhitas'', ''Brahmanas'' and more notably in the ''Sulbha sutras'' (800 BC or earlier). (See Bag, Indian Journal of History of Science, 25(1-4), 1990).
 
It is suggested that Aryabhata (5th century AD) in calculating a value of pi to 5 significant figures, he used the word āsanna (approaching), to mean that not only is this an approximation but that the value is incommensurable (or irrational).
 
Later, in their treatises, Indian mathematicians wrote  on the arithmetic of surds including addition, subtraction, multiplication, rationalization, as well as separation and extraction of square roots. (See Datta, Singh, Indian Journal of History of Science, 28(3), 1993).
 
Mathematicians like Brahmagupta (in 628 AD) and Bhaskara I (in 629 AD) made contributions in this area as did other mathematicians who followed. In the 12th century Bhaskara II evaluated some of these formulas and critiqued them, identifying their limitations.
 
During the 14th to 16th centuries, [[Madhava of Sangamagrama]] and the [[Kerala school of astronomy and mathematics]] discovered the [[infinite series]] for several irrational numbers such as ''[[pi|π]]'' and certain irrational values of [[trigonometric function]]s. [[Jyesthadeva]] provided proofs for these infinite series in the ''[[Yuktibhāṣā]]''.<ref name="katz">Katz, V. J. (1995), "Ideas of Calculus in Islam and India", ''Mathematics Magazine'' (Mathematical Association of America) '''68''' (3): 163&ndash;74.</ref>
 
===Middle Ages===
In the [[Middle ages]], the development of [[algebra]] by [[Mathematics in medieval Islam|Muslim mathematicians]] allowed irrational numbers to be treated as ''algebraic objects''.<ref>{{MacTutor|class=HistTopics|id=Arabic_mathematics|title=Arabic mathematics: forgotten brilliance?|year=1999}}.</ref> Middle Eastern mathematicians also merged the concepts of "[[number]]" and "[[Magnitude (mathematics)|magnitude]]" into a more general idea of [[real number]]s, criticized Euclid's idea of [[ratio]]s, developed the theory of composite ratios, and extended the concept of number to ratios of continuous magnitude.<ref>{{Cite journal|last=Matvievskaya|first=Galina|year=1987|title=The Theory of Quadratic Irrationals in Medieval Oriental Mathematics|journal=[[New York Academy of Sciences|Annals of the New York Academy of Sciences]]|volume=500|pages=253&ndash;277 [254]|doi=10.1111/j.1749-6632.1987.tb37206.x|ref=harv|postscript=<!--None-->}}.</ref> In his commentary on Book 10 of the ''Elements'', the [[Persian people|Persian]] mathematician [[Al-Mahani]] (d. 874/884) examined and classified [[quadratic irrational]]s and cubic irrationals. He provided definitions for rational and irrational magnitudes, which he treated as irrational numbers. He dealt with them freely but explains them in geometric terms as follows:<ref name="Matvievskaya-259">{{Cite journal|last=Matvievskaya|first=Galina|year=1987|title=The Theory of Quadratic Irrationals in Medieval Oriental Mathematics|journal=Annals of the New York Academy of Sciences|volume=500|pages=253&ndash;277 [259]|doi=10.1111/j.1749-6632.1987.tb37206.x|ref=harv|postscript=<!--None-->}}</ref>
 
{{quote|"It will be a rational (magnitude) when we, for instance, say 10, 12, 3%, 6%, etc., because its value is pronounced and expressed quantitatively. What is not rational is irrational and it is impossible to pronounce and represent its value quantitatively. For example: the roots of numbers such as 10, 15, 20 which are not squares, the sides of numbers which are not cubes ''etc.''"}}
 
In contrast to Euclid's concept of magnitudes as lines, Al-Mahani considered integers and fractions as rational magnitudes, and square roots and [[cube root]]s as irrational magnitudes. He also introduced an [[arithmetic]]al approach to the concept of irrationality, as he attributes the following to irrational magnitudes:<ref name="Matvievskaya-259"/>
 
{{quote|"their sums or differences, or results of their addition to a rational magnitude, or results of subtracting a magnitude of this kind from an irrational one, or of a rational magnitude from it."}}
 
The [[Egypt]]ian mathematician [[Abū Kāmil Shujā ibn Aslam]] (c. 850 &ndash; 930) was the first to accept irrational numbers as solutions to [[quadratic equation]]s or as [[coefficient]]s in an [[equation]], often in the form of square roots, cube roots and [[Nth root|fourth roots]].<ref>Jacques Sesiano, "Islamic mathematics", p. 148, in {{Cite book|title=Mathematics Across Cultures: The History of Non-western Mathematics|first1=Helaine|last1=Selin|first2=Ubiratan|last2=D'Ambrosio|year=2000|publisher=[[Springer Science+Business Media|Springer]]|isbn=1-4020-0260-2|ref=harv|postscript=<!--None-->}}.</ref> In the 10th century, the [[Iraq]]i mathematician Al-Hashimi provided general proofs (rather than geometric demonstrations) for irrational numbers, as he considered multiplication, division, and other arithmetical functions.<ref>{{Cite journal|last=Matvievskaya|first=Galina|year=1987|title=The Theory of Quadratic Irrationals in Medieval Oriental Mathematics|journal=Annals of the New York Academy of Sciences|volume=500|pages=253&ndash;277 [260]|doi=10.1111/j.1749-6632.1987.tb37206.x|ref=harv|postscript=<!--None-->}}.</ref> Iranian mathematician, [[Abū Ja'far al-Khāzin]] (900&ndash;971) provides a definition of rational and irrational magnitudes, stating that if a definite [[quantity]] is:<ref>{{Cite journal|last=Matvievskaya|first=Galina|year=1987|title=The Theory of Quadratic Irrationals in Medieval Oriental Mathematics|journal=Annals of the New York Academy of Sciences|volume=500|pages=253&ndash;277 [261]|doi=10.1111/j.1749-6632.1987.tb37206.x|ref=harv|postscript=<!--None-->}}.</ref>
 
{{quote|"contained in a certain given magnitude once or many times, then this (given) magnitude corresponds to a rational number. . . . Each time when this (latter) magnitude comprises a half, or a third, or a quarter of the given magnitude (of the unit), or, compared with (the unit), comprises three, five, or three fifths, it is a rational magnitude. And, in general, each magnitude that corresponds to this magnitude (''i.e.'' to the unit), as one number to another, is rational. If, however, a magnitude cannot be represented as a multiple, a part (l/''n''), or parts (''m''/''n'') of a given magnitude, it is irrational, ''i.e.'' it cannot be expressed other than by means of roots."}}
 
Many of these concepts were eventually accepted by European mathematicians sometime after the [[Latin translations of the 12th century]]. [[Al-Hassār]], a Moroccan mathematician from [[Fes|Fez]] specializing in [[Islamic inheritance jurisprudence]] during the 12th century, first mentions the use of a fractional bar, where [[numerator]]s and denominators are separated by a horizontal bar. In his discussion he writes, "..., for example, if you are told to write three-fifths and a third of a fifth, write thus, <math>\frac{3 \quad 1}{5 \quad 3}</math>." <ref>{{citation|last=Cajori|first=Florian|title=A History of Mathematical Notations (Vol.1)|publisher=The Open Court Publishing Company|year=1928|place=La Salle, Illinois}} pg. 269.</ref> This same fractional notation appears soon after in the work of [[Leonardo Fibonacci]] in the 13th century.<ref>{{harv|Cajori|1928|loc=pg.89}}</ref>
 
===Modern period===
The 17th century saw [[imaginary number]]s become a powerful tool in the hands of [[Abraham de Moivre]], and especially of [[Leonhard Euler]]. The completion of the theory of [[complex number]]s in the 19th century entailed the differentiation of irrationals into algebraic and [[transcendental numbers]], the proof of the existence of transcendental numbers, and the resurgence of the scientific study of the theory of irrationals, largely ignored since [[Euclid]]. The year 1872 saw the publication of the theories of [[Karl Weierstrass]] (by his pupil [[Ernst Kossak]]), [[Eduard Heine]] (''[[Crelle's Journal]]'', 74), [[Georg Cantor]] (Annalen, 5), and [[Richard Dedekind]]. Méray had taken in 1869 the same point of departure as Heine, but the theory is generally referred to the year 1872. Weierstrass's method has been completely set forth by [[Salvatore Pincherle]] in 1880,<ref>{{cite journal|author=Salvatore Pincherle|title=Saggio di una introduzione alla teorica delle funzioni analitiche secondo i principi del prof. Weierstrass |journal=Giornale di Matematiche |year=1880|ref=harv}}</ref> and Dedekind's has received additional prominence through the author's later work (1888) and the endorsement by [[Paul Tannery]] (1894). Weierstrass, Cantor, and Heine base their theories on infinite series, while Dedekind founds his on the idea of a [[Dedekind cut|cut (Schnitt)]] in the system of [[real number]]s, separating all [[rational number]]s into two groups having certain characteristic properties. The subject has received later contributions at the hands of Weierstrass, [[Leopold Kronecker]] (Crelle, 101), and [[Charles Méray]].
 
[[Continued fraction]]s, closely related to irrational numbers (and due to Cataldi, 1613), received attention at the hands of Euler, and at the opening of the 19th century were brought into prominence through the writings of [[Joseph Louis Lagrange]]. Dirichlet also added to the general theory, as have numerous contributors to the applications of the subject.
 
[[Johann Heinrich Lambert]] proved (1761) that π cannot be rational, and that ''e''<sup>''n''</sup> is irrational if ''n'' is rational (unless ''n''&nbsp;=&nbsp;0).<ref>{{cite journal|title=Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques|journal=Histoire de l'Académie Royale des Sciences et des Belles-Lettres der Berlin|author=J. H. Lambert|year=1761|pages=265–276|ref=harv}}</ref> While Lambert's proof is often called incomplete, modern assessments support it as satisfactory, and in fact for its time it is unusually rigorous. [[Adrien-Marie Legendre]] (1794), after introducing the [[Bessel&ndash;Clifford function]], provided a proof to show that π<sup>2</sup> is irrational,  whence it follows immediately that π is irrational also. The existence of [[transcendental number]]s was first established by Liouville (1844, 1851).  Later, [[Georg Cantor]] (1873) proved their existence by a [[Cantor's first uncountability proof|different method]], that showed that every interval in the reals contains transcendental numbers. [[Charles Hermite]] (1873) first proved ''e'' transcendental, and [[Ferdinand von Lindemann]] (1882), starting from Hermite's conclusions, showed the same for π. Lindemann's proof was much simplified by Weierstrass (1885), still further by [[David Hilbert]] (1893), and was finally made elementary by [[Adolf Hurwitz]] and [[Paul Gordan]].
 
== Example proofs ==
{{unreferenced section|date=June 2013}}
 
=== Square roots ===
The [[square root of 2]] was the first number proved irrational, and that article contains a number of proofs. The [[golden ratio]] is another famous quadratic irrational and there is a simple proof of its irrationality in its article. The square roots of all natural numbers which are not [[perfect squares]] are irrational and a proof may be found in [[quadratic irrational]]s.
 
===General roots===
The proof above for the square root of two can be generalized using the [[fundamental theorem of arithmetic]]. This asserts that every integer has a [[unique factorization]] into primes. Using it we can show that if a rational number is not an integer then no integral power of it can be an integer, as in [[lowest terms]] there must be a [[Prime number|prime]] in the denominator that does not divide into the numerator whatever power each is raised to. Therefore if an integer is not an exact ''k''<sup>th</sup> power of another integer then its ''k''<sup>th</sup> root is irrational.
 
=== Logarithms ===
Perhaps the numbers most easy to prove irrational are certain [[logarithm]]s. Here is a proof by contradiction ([[reductio ad absurdum]]) that log<sub>2</sub>&nbsp;3 is irrational. Notice that log<sub>2</sub>&nbsp;3 ≈&nbsp;1.58&nbsp;>&nbsp;0.
 
Assume log<sub>2</sub>&nbsp;3 is rational. For some positive integers ''m'' and ''n'', we have
 
: <math>\log_2 3 = \frac{m}{n}.</math>
 
It follows that
 
: <math>2^{m/n}=3\,</math>
 
: <math>(2^{m/n})^n = 3^n\,</math>
 
: <math>2^m=3^n.\,</math>
 
However, the number 2 raised to any positive integer power must be even (because it is divisible by&nbsp;2) and the number&nbsp;3 raised to any positive integer power must be odd (since none of its [[prime factor]]s will be&nbsp;2).  Clearly, an integer cannot be both odd and even at the same time: we have a contradiction. The only assumption we made was that log<sub>2</sub>&nbsp;3 is rational (and so expressible as a quotient of integers ''m''/''n'' with ''n''&nbsp;≠&nbsp;0). The contradiction means that this assumption must be false, i.e. log<sub>2</sub>&nbsp;3 is irrational, and can never be expressed as a quotient of integers ''m''/''n'' with ''n''&nbsp;≠&nbsp;0.
 
Cases such as log<sub>10</sub>&nbsp;2 can be treated similarly.
 
== Transcendental and algebraic irrationals ==
[[Almost all]] irrational numbers are transcendental and all real [[transcendental number]]s are irrational (there are also complex transcendental numbers): the article on transcendental numbers lists several examples. ''e''<sup>&nbsp;''r''</sup> and π<sup>&nbsp;''r''</sup> are irrational if ''r''&nbsp;≠&nbsp;0 is rational; ''e''<sup>π</sup> is irrational.
 
Another way to construct irrational numbers is as irrational [[algebraic number]]s, i.e. as zeros of [[polynomial]]s with integer coefficients: start with a polynomial equation
 
:<math>p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0 \, </math>
 
where the coefficients ''a''<sub>''i''</sub> are integers. Suppose you know that there exists some real number ''x'' with ''p''(''x'')&nbsp;=&nbsp;0 (for instance if ''n'' is odd and ''a''<sub>''n''</sub> is non-zero, then because of the [[intermediate value theorem]]). The only possible rational roots of this polynomial equation are of the form ''r''/''s'' where ''r'' is a [[divisor]] of ''a''<sub>0</sub> and ''s'' is a divisor of ''a''<sub>''n''</sub>; there are only finitely so many such candidates you can check by hand. If neither of them is a root of ''p'', then ''x'' must be irrational. For example, this technique can be used to show that ''x''&nbsp;=&nbsp;(2<sup>1/2</sup>&nbsp;+&nbsp;1)<sup>1/3</sup> is irrational: we have (''x''<sup>3</sup>&nbsp;−&nbsp;1)<sup>2</sup> = 2 and hence ''x''<sup>6</sup>&nbsp;−&nbsp;2''x''<sup>3</sup>&nbsp;−&nbsp;1&nbsp;=&nbsp;0, and this latter polynomial does not have any rational roots (the only candidates to check are ±1).
 
Because the algebraic numbers form a [[field (mathematics)|field]], many irrational numbers can be constructed by combining transcendental and algebraic numbers. For example 3π&nbsp;+&nbsp;2, π&nbsp;+&nbsp;√<span style="text-decoration: overline">2</span> and ''e''√<span style="text-decoration: overline">3</span> are irrational (and even transcendental).
 
==Decimal expansions==
The decimal expansion of an irrational number never repeats or terminates, unlike a rational number. Similarly for [[Binary numeral system|binary]], [[octal]] or [[hexadecimal]] expansions, and in general for expansions in every [[Positional notation|positional]] [[numeral system|notation]] with [[natural number|natural]] bases.
 
To show this, suppose we divide integers ''n'' by ''m'' (where ''m'' is nonzero). When [[long division]] is applied to the division of ''n'' by ''m'', only ''m'' remainders are possible. If 0 appears as a remainder, the decimal expansion terminates. If 0 never occurs, then the algorithm can run at most ''m'' − 1 steps without using any remainder more than once. After that, a remainder must recur, and then the decimal expansion repeats.
 
Conversely, suppose we are faced with a [[repeating decimal]], we can prove that it is a fraction of two integers. For example, consider:
 
:<math>A=0.7\,162\,162\,162\,\cdots .</math>
 
Here the repitend is 162 and the length of the repitend is 3. First, we multiply by an appropriate power of 10 to move the decimal point to the right so that it is just in front of a repitend. In this example we would multiply by 10 to obtain:
 
:<math>10A = 7.162\,162\,162\,\cdots .</math>
 
Now we multiply this equation by 10<sup>''r''</sup> where ''r'' is the length of the repitend. This has the effect of moving the decimal point to be in front of the "next" repitend. In our example, multiply by 10<sup>3</sup>:
 
:<math>10,000A=7\,162.162\,162\,\cdots .</math>
 
The result of the two multiplications gives two different expressions with exactly the same "decimal portion", that is, the tail end of 10,000''A'' matches the tail end of 10''A'' exactly. Here, both 10,000''A'' and 10''A'' have .162162162 ... at the end.
 
Therefore, when we subtract the 10''A'' equation from the 10,000''A'' equation, the tail end of 10''A'' cancels out the tail end of 10,000''A'' leaving us with:
 
:<math>9990A=7155.</math>
 
Then
 
:<math>A= \frac{7155}{9990} = \frac{135 \times 53}{135 \times 74} = \frac{53}{74},</math>
 
(135 is the [[greatest common divisor]] of 7155 and 9990).  53/74 is a quotient of integers and therefore a rational number.
 
== Irrational powers ==
Dov Jarden gave a simple non-[[constructive proof]] that there exist two irrational numbers ''a'' and ''b'', such that ''a''<sup>''b''</sup> is rational.<ref>{{cite book |title=Philosophies of mathematics| first1=Alexander |last1=George |first2=Daniel J. |last2=Velleman |isbn=0-631-19544-0 |publisher=Blackwell |year=2002 |pages=3–4}}</ref>
 
Indeed, if √<span style="text-decoration: overline">2</span><sup>√<span style="text-decoration: overline">2</span></sup> is rational, then take ''a'' = ''b'' = √<span style="text-decoration: overline">2</span>.  Otherwise, take ''a'' to be the irrational number √<span style="text-decoration: overline">2</span><sup>√<span style="text-decoration: overline">2</span></sup> and ''b'' = √<span style="text-decoration: overline">2</span>.  Then ''a''<sup>''b''</sup> = (√<span style="text-decoration: overline">2</span><sup>√<span style="text-decoration: overline">2</span></sup>)<sup>√<span style="text-decoration: overline">2</span></sup> = √<span style="text-decoration: overline">2</span><sup>√<span style="text-decoration: overline">2</span>·√<span style="text-decoration: overline">2</span></sup> = √<span style="text-decoration: overline">2</span><sup>2</sup> =
2, which is rational.
 
Although the above argument does not decide between the two cases, the [[Gelfond–Schneider theorem]] shows that √<span style="text-decoration: overline">2</span><sup>√<span style="text-decoration: overline">2</span></sup> is [[Transcendental number|transcendental]], hence irrational. This theorem states that if ''a'' and ''b'' are both [[algebraic number]]s, and ''a'' is not equal to 0 or 1, and ''b'' is not a rational number, then any value of ''a''<sup>''b''</sup> is a transcendental number (there can be more than one value if [[Exponentiation#Powers of complex numbers|complex number exponentiation]] is used).
 
An example that provides a simple constructive proof is<ref>Lord, Nick, "Maths bite: irrational powers of irrational numbers can be rational", ''Mathematical Gazette'' 92, November 2008, p. 534.</ref>
 
:<math>\left(\sqrt{2}\right)^{\log_{\sqrt{2}}3}=3.</math>
 
The base of the left side is irrational and the right side is rational, so one must prove that the exponent on the left side, <math>\log_{\sqrt{2}}3</math>, is irrational. This is so because, by the formula relating logarithms with different bases,
 
:<math>\log_{\sqrt{2}}3=\frac{\log_2 3}{\log_2 \sqrt{2}}=\frac{\log_2 3}{1/2} = 2\log_2 3</math>
 
which we can assume, for the sake of establishing a [[proof by contradiction|contradiction]], equals a ratio ''m/n'' of positive integers. Then <math>\log_2 3 = m/2n</math> hence <math>2^{\log_2 3}=2^{m/2n}</math> hence <math>3=2^{m/2n}</math> hence <math>3^{2n}=2^m</math>, which is a contradictory pair of prime factorizations and hence violates the [[fundamental theorem of arithmetic]] (unique prime factorization).
 
A stronger result is the following:<ref name=Marshall>Marshall, Ash J., and Tan, Yiren, "A rational number of the form ''a''<sup>''a''</sup> with ''a'' irrational", ''[[Mathematical Gazette]]'' 96, March 2012, pp. 106-109.</ref> Every rational number in the interval <math>((1/e)^{1/e}, \infty)</math> can be written either as ''a''<sup>''a''</sup> for some irrational number ''a'' or as ''n''<sup>''n''</sup> for some natural number ''n''. Similarly,<ref name=Marshall/> every positive rational number can be written either as <math>a^{a^a}</math> for some irrational number ''a'' or as <math>n^{n^n}</math> for some natural number ''n''.
 
== Open questions ==
It is not known whether [[Pi|{{pi}}]] + ''e'' or {{pi}} − ''e'' is irrational or not. In fact, there is no pair of non-zero integers ''m'' and ''n'' for which it is known whether ''m{{pi}} + ne'' is irrational or not. Moreover, it is not known whether the set {{{pi}}, ''e''} is [[algebraic independence|algebraically independent]] over '''Q'''.
 
It is not known whether {{pi}}''e'', {{pi}}/''e'', 2<sup>''e''</sup>, ''e''<sup>''e''</sup>, ''e''<sup>''e''<sup>''e''</sup></sup>, {{pi}}<sup>''e''</sup>, {{pi}}<sup>[[Square root of 2|&radic;<span style="text-decoration: overline">2</span>]]</sup>, [[Natural logarithm|ln]] {{pi}}, [[Catalan's constant]], or the [[Euler–Mascheroni gamma constant]] γ are irrational.<ref>{{MathWorld|Pi|Pi}}</ref><ref>{{MathWorld|IrrationalNumber|Irrational Number}}</ref><ref>[http://www.math.ou.edu/~jalbert/courses/openprob2.pdf Some unsolved problems in number theory]</ref>
It is not known if <sup>[[Tetration#Open questions|''n'']]</sup>{{pi}} or <sup>''n''</sup>''e'' is rational for any positive integer ''n''.
 
== The set of all irrationals ==
Since the reals form an [[uncountable]]
set, of which the rationals are a [[Countable set|countable]] subset, the complementary set of
irrationals is uncountable.
 
Under the usual ([[Euclidean distance|Euclidean]]) distance function ''d''(''x'',&nbsp;''y'') = |''x''&nbsp;&minus;&nbsp;''y''|, the real numbers are a [[metric space]] and hence also a [[topological space]].  Restricting the Euclidean distance function gives the irrationals the structure of a metric space.  Since the subspace of irrationals is not closed,
the induced metric is not [[complete (topology)|complete]].  However, being a [[G-delta set]]&mdash;i.e., a countable intersection of open subsets&mdash;in a complete metric space, the space of irrationals is [[completely metrizable]]: that is, there is a metric on the irrationals inducing the same topology as the restriction of the Euclidean metric, but with respect to which the irrationals are complete.  One can see this without knowing the aforementioned fact about G-delta sets: the [[continued fraction]] expansion of an irrational number defines a homeomorphism from the space of irrationals to the space of all sequences of positive integers, which is easily seen to be completely metrizable.
 
Furthermore, the set of all irrationals is a disconnected metrizable space. In fact, the irrationals have a basis of [[clopen set]]s so the space is zero-dimensional.
 
==See also==
* [[Computable number]]
* [[Dedekind cut]]
* [[Diophantine approximation]]
* [[Golden Ratio]]
* [[nth root|''n''th root]]
* [[Proof that e is irrational]]
* [[Proof that &pi; is irrational]]
* [[Square root of 2]]
* [[Square root of 3]]
* [[Square root of 5]]
* [[Transcendental number]]
* [[Trigonometric number]]
 
== References ==
{{Reflist|2}}
 
== Further reading ==
* [[Adrien-Marie Legendre]], ''Éléments de Géometrie'', Note IV, (1802), Paris
* Rolf Wallisser, "On Lambert's proof of the irrationality of π", in ''Algebraic Number Theory and Diophantine Analysis'', Franz Halter-Koch and Robert F. Tichy, (2000), Walter de Gruyer
 
== External links ==
{{Commons category|Irrational numbers}}
* [http://www.dm.uniba.it/~psiche/bas2/node5.html Zeno's Paradoxes and Incommensurability] (n.d.). Retrieved April 1, 2008
* {{MathWorld|title=Irrational Number|urlname=IrrationalNumber}}
* [http://www.cut-the-knot.org/proofs/sq_root.shtml Square root of 2 is irrational]
 
{{Number Systems}}
 
{{DEFAULTSORT:Irrational Number}}
[[Category:Irrational numbers| ]]
[[Category:Articles containing proofs]]
 
{{Link FA|lmo}}

Latest revision as of 09:28, 10 May 2014

Hi, everybody! My name is Moses.
It is a little about myself: I live in Poland, my city of Zabrze.
It's called often Northern or cultural capital of . I've married 1 years ago.
I have two children - a son (Maisie) and the daughter (Williemae). We all like Games Club - Dungeons and Dragons, Monopoly, Etc..

Here is my blog post; http://tinyurl.com/oh3punx