't Hooft symbol: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Hhhippo
stub sorting, refs
en>Yobot
m WP:CHECKWIKI error fixes using AWB (10369)
 
Line 1: Line 1:
[[Image:Toroidal coordinates.png|thumb|350px|right|Illustration of toroidal coordinates, which are obtained by rotating a two-dimensional [[bipolar coordinates|bipolar coordinate system]] about the axis separating its two foci.  The foci are located at a distance 1 from the vertical ''z''-axis.  The red sphere is the σ = 30° isosurface, the blue torus is the τ = 0.5 isosurface, and the yellow half-plane is the φ = 60° isosurface. The green half-plane marks the ''x''-''z'' plane, from which φ is measured.  The black point is located at the intersection of the red, blue and yellow isosurfaces, at Cartesian coordinates roughly (0.996, −1.725, 1.911).]]
Hello and welcome. My title is Irwin and I totally dig that name. Doing ceramics is what her family members and her enjoy. North Dakota is our beginning place. Hiring is my occupation.<br><br>My blog :: [http://www.buzzbit.net/user/AFilson http://www.buzzbit.net]
 
'''Toroidal coordinates''' are a three-dimensional [[orthogonal coordinates|orthogonal]] [[coordinate system]] that results from rotating the two-dimensional [[bipolar coordinates|bipolar coordinate system]] about the axis that separates its two foci.  Thus, the two [[Focus (geometry)|foci]] <math>F_1</math> and <math>F_2</math> in [[bipolar coordinates]] become a ring of radius <math>a</math> in the <math>xy</math> plane of the toroidal coordinate system; the <math>z</math>-axis is the axis of rotation. The focal ring is also known as the reference circle.
 
==Definition==
 
The most common definition of toroidal coordinates <math>(\sigma, \tau, \phi)</math> is
 
:<math>
x = a \ \frac{\sinh \tau}{\cosh \tau - \cos \sigma} \cos \phi
</math>
 
:<math>
y = a \ \frac{\sinh \tau}{\cosh \tau - \cos \sigma} \sin \phi
</math>
 
:<math>
z = a \ \frac{\sin \sigma}{\cosh \tau - \cos \sigma}
</math>
 
where the <math>\sigma</math> coordinate of a point <math>P</math> equals the angle <math>F_{1} P F_{2}</math> and the <math>\tau</math> coordinate equals the [[natural logarithm]] of the ratio of the distances <math>d_{1}</math> and <math>d_{2}</math> to opposite sides of the focal ring
 
:<math>
\tau = \ln \frac{d_{1}}{d_{2}}.
</math>
 
The coordinate ranges are <math>-\pi<\sigma\le\pi</math> and <math>\tau\ge 0</math> and <math>0\le\phi < 2\pi.</math>
 
===Coordinate surfaces===
[[Image:Apollonian circles.svg||thumb|right|350px|Rotating this two-dimensional [[bipolar coordinates|bipolar coordinate system]] about the vertical axis produces the three-dimensional toroidal coordinate system above.  A circle on the vertical axis becomes the red [[sphere]], whereas a circle on the horizontal axis becomes the blue [[torus]].]]
 
Surfaces of constant <math>\sigma</math> correspond to spheres of different radii
 
:<math>
\left( x^{2} + y^{2} \right) +
\left( z - a \cot \sigma \right)^{2} = \frac{a^{2}}{\sin^{2} \sigma}
</math>
 
that all pass through the focal ring but are not concentric.  The surfaces of constant <math>\tau</math> are non-intersecting tori of different radii
 
:<math>
z^{2} +
\left( \sqrt{x^{2} + y^{2}} - a \coth \tau \right)^{2} = \frac{a^{2}}{\sinh^{2} \tau}
</math>
 
that surround the focal ring. The centers of the constant-<math>\sigma</math> spheres lie along the <math>z</math>-axis, whereas the constant-<math>\tau</math> tori are centered in the <math>xy</math> plane.
 
===Inverse transformation===
 
The (σ, τ, φ) coordinates may be calculated from the Cartesian coordinates (''x'', ''y'', ''z'') as follows.  The azimuthal angle φ is given by the formula
 
:<math>
\tan \phi = \frac{y}{x}
</math>
 
The cylindrical radius ρ of the point P is given by
 
:<math>
\rho^{2} = x^{2} + y^{2}
</math>
 
and its distances to the foci in the plane defined by φ is given by
 
:<math>
d_{1}^{2} = (\rho + a)^{2} + z^{2}
</math>
 
:<math>
d_{2}^{2} = (\rho - a)^{2} + z^{2}
</math>
 
[[Image:Bipolar coordinates.png|thumb|right|350px|Geometric interpretation of the coordinates σ and τ of a point '''P'''.  Observed in the plane of constant azimuthal angle φ, toroidal coordinates are equivalent to [[bipolar coordinates]].  The angle σ is formed by the two foci in this plane and '''P''', whereas τ is the logarithm of the ratio of distances to the foci.  The corresponding circles of constant σ and τ are shown in red and blue, respectively, and meet at right angles (magenta box); they are orthogonal.]]
 
The coordinate τ equals the [[natural logarithm]] of the focal distances
 
:<math>
\tau = \ln \frac{d_{1}}{d_{2}}
</math>
 
whereas the coordinate σ equals the angle between the rays to the foci, which may be determined from the [[law of cosines]]
 
:<math>
\cos \sigma = -\frac{4a^{2} - d_{1}^{2} - d_{2}^{2}}{2 d_{1} d_{2}}
</math>
 
where the sign of σ is determined by whether the coordinate surface sphere is above or below the ''x''-''y'' plane.
 
===Scale factors===
 
The scale factors for the toroidal coordinates <math>\sigma</math> and <math>\tau</math> are equal
 
:<math>
h_\sigma = h_\tau = \frac{a}{\cosh \tau - \cos\sigma}
</math>
 
whereas the azimuthal scale factor equals
 
:<math>
h_\phi = \frac{a \sinh \tau}{\cosh \tau - \cos\sigma}
</math>
 
Thus, the infinitesimal volume element equals
 
:<math>
dV = \frac{a^3 \sinh \tau}{\left( \cosh \tau - \cos\sigma \right)^3} \, d\sigma \, d\tau \, d\phi
</math>
 
and the Laplacian is given by
 
:<math>
\begin{align}
\nabla^2 \Phi =
\frac{\left( \cosh \tau - \cos\sigma \right)^{3}}{a^{2}\sinh \tau}
& \left[
\sinh \tau
\frac{\partial}{\partial \sigma}
\left( \frac{1}{\cosh \tau - \cos\sigma}
\frac{\partial \Phi}{\partial \sigma}
\right) \right. \\[8pt]
& {} \quad +
\left. \frac{\partial}{\partial \tau}
\left( \frac{\sinh \tau}{\cosh \tau - \cos\sigma}
\frac{\partial \Phi}{\partial \tau}
\right) +
\frac{1}{\sinh \tau \left( \cosh \tau - \cos\sigma \right)}
\frac{\partial^2 \Phi}{\partial \phi^2}
\right]
\end{align}
</math>
 
Other differential operators such as <math>\nabla \cdot \mathbf{F}</math>
and <math>\nabla \times \mathbf{F}</math> can be expressed in the coordinates <math>(\sigma, \tau, \phi)</math> by substituting
the scale factors into the general formulae
found in [[orthogonal coordinates]].
 
==Toroidal harmonics==
===Standard separation ===
 
The 3-variable [[Laplace equation]]
 
:<math>\nabla^2\Phi=0</math>
 
admits solution via [[separation of variables]] in toroidal coordinates. Making the substitution
 
:<math>
V=U\sqrt{\cosh\tau-\cos\sigma}
</math>
 
A separable equation is then obtained. A particular solution obtained by [[separation of variables]] is:
 
:<math>V= \sqrt{\cosh\tau-\cos\sigma}\,\,S_\nu(\sigma)T_{\mu\nu}(\tau)\Phi_\mu(\phi)\,</math>
 
where each function is a linear combination of:
 
:<math>
S_\nu(\sigma)=e^{i\nu\sigma}\,\,\,\,\mathrm{and}\,\,\,\,e^{-i\nu\sigma}
</math>
:<math>
T_{\mu\nu}(\tau)=P_{\nu-1/2}^\mu(\cosh\tau)\,\,\,\,\mathrm{and}\,\,\,\,Q_{\nu-1/2}^\mu(\cosh\tau)
</math>
:<math>
\Phi_\mu(\phi)=e^{i\mu\phi}\,\,\,\,\mathrm{and}\,\,\,\,e^{-i\mu\phi}
</math>
 
Where P and Q are [[associated Legendre functions]] of the first and second kind. These Legendre functions are often referred to as toroidal harmonics.
 
Toroidal harmonics have many interesting properties.  If you make a variable substitution <math>\,\!1<z=\cosh\eta\,</math> then, for instance, with vanishing order  (the convention is to not write the order when it vanishes) and <math>\,\!n=0</math>
 
:<math>Q_{-\frac12}(z)=\sqrt{\frac{2}{1+z}}K\left(\sqrt{\frac{2}{1+z}}\right)</math>
 
and
 
:<math>P_{-\frac12}(z)=\frac{2}{\pi}\sqrt{\frac{2}{1+z}}K \left( \sqrt{\frac{z-1}{z+1}} \right)</math>
 
where <math>\,\!K</math> and <math>\,\!E</math> are the complete [[elliptic integrals]] of the [[Elliptic integral#Complete elliptic integral of the first kind|first]] and [[Elliptic integral#Complete elliptic integral of the second kind|second]] kind respectively.  The rest of the toroidal harmonics can be obtained, for instance, in terms of the complete elliptic integrals, by using recurrence relations for associated Legendre functions.
 
The classic applications of toroidal coordinates are in solving [[partial differential equations]],
e.g., [[Laplace's equation]] for which toroidal coordinates allow a [[separation of variables]] or the [[Helmholtz equation]], for which toroidal coordinates do not allow a separation of variables. Typical examples would be the [[electric potential]] and [[electric field]] of a conducting torus, or in the degenerate case, a conducting ring.
 
===An alternative separation===
Alternatively, a different substitution may be made (Andrews 2006)
 
:<math>
V=\frac{U}{\sqrt{\rho}}
</math>
 
where
 
:<math>
\rho=\sqrt{x^2+y^2}=\frac{\cosh\tau-\cos\sigma}{a\sinh\tau}.
</math>
 
Again, a separable equation is obtained. A particular solution obtained by [[separation of variables]] is then:
 
:<math>V= \frac{a}{\rho}\,\,S_\nu(\sigma)T_{\mu\nu}(\tau)\Phi_\mu(\phi)\,</math>
 
where each function is a linear combination of:
 
:<math>
S_\nu(\sigma)=e^{i\nu\sigma}\,\,\,\,\mathrm{and}\,\,\,\,e^{-i\nu\sigma}
</math>
:<math>
T_{\mu\nu}(\tau)=P_{\mu-1/2}^\nu(\coth\tau)\,\,\,\,\mathrm{and}\,\,\,\,Q_{\mu-1/2}^\nu(\coth\tau)
</math>
:<math>
\Phi_\mu(\phi)=e^{i\mu\phi}\,\,\,\,\mathrm{and}\,\,\,\,e^{-i\mu\phi}.
</math>
 
Note that although the toroidal harmonics are used again for the ''T''&nbsp; function, the argument is <math>\coth\tau</math> rather than <math>\cosh\tau</math> and the <math>\mu</math> and <math>\nu</math> indices are exchanged. This method is useful for situations in which the boundary conditions are independent of the spherical angle <math>\theta</math>, such as the charged ring, an infinite half plane, or two parallel planes. For identities relating the toroidal harmonics with argument hyperbolic
cosine with those of argument hyperbolic cotangent, see the [[Whipple formulae]].
 
==References==
*Byerly, W E.  (1893) ''[http://www.archive.org/details/elemtreatfour00byerrich An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in mathematical physics]'' Ginn &amp; co. pp. 264–266
*{{cite book | author = Arfken G | year = 1970 | title = Mathematical Methods for Physicists | edition = 2nd | publisher = Academic Press | location = Orlando, FL | pages = 112–115}}
*{{cite journal |last=Andrews |first=Mark |year=2006 |title=Alternative separation of Laplace's equation in toroidal coordinates and its application to electrostatics |journal=Journal of Electrostatics |volume=64|pages=664–672 |doi=10.1016/j.elstat.2005.11.005 |issue=10}}
 
==Bibliography==
*{{cite book | author = Morse P M, Feshbach H | year = 1953 | title = Methods of Theoretical Physics, Part I | publisher = McGraw–Hill | location = New York | page = 666}}
*{{cite book | author = Korn G A, Korn T M |year = 1961 | title = Mathematical Handbook for Scientists and Engineers | publisher = McGraw-Hill | location = New York | page = 182 | lccn = 5914456}}
*{{cite book | author = Margenau H, Murphy G M | year = 1956 | title = The Mathematics of Physics and Chemistry | publisher = D. van Nostrand | location = New York| pages = 190&ndash;192 | lccn = 5510911 }}
*{{cite book | author = Moon P H, Spencer D E | year = 1988 | chapter = Toroidal Coordinates (''η'', ''θ'', ''ψ'') | title = Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions | edition = 2nd ed., 3rd revised printing | publisher = Springer Verlag | location = New York | isbn = 0-387-02732-7 | pages = 112&ndash;115 (Section IV, E4Ry)}}
 
==External links==
*[http://mathworld.wolfram.com/ToroidalCoordinates.html MathWorld description of toroidal coordinates]
 
{{Orthogonal coordinate systems}}
 
[[Category:Coordinate systems]]

Latest revision as of 13:41, 13 August 2014

Hello and welcome. My title is Irwin and I totally dig that name. Doing ceramics is what her family members and her enjoy. North Dakota is our beginning place. Hiring is my occupation.

My blog :: http://www.buzzbit.net