E6B: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Paradies
Adding 1 accessdates using Checklinks
No edit summary
 
Line 1: Line 1:
{{Probability distribution|
Hi! <br>My name is Osvaldo and I'm a 27 years old girl from Varzea Grande.<br><br>Also visit my homepage - [http://grapier.irucomm.com/xe/603290 FIFA 15 coin hack]
  name      =Inverse-chi-squared|
  type      =density|
  pdf_image  =[[Image:Inverse chi squared density.png]]|
  cdf_image  =[[Image:Inverse chi squared distribution.png]]|
  parameters =<math>\nu > 0\!</math>|
  support    =<math>x \in (0, \infty)\!</math>|
  pdf        =<math>\frac{2^{-\nu/2}}{\Gamma(\nu/2)}\,x^{-\nu/2-1}  e^{-1/(2 x)}\!</math>|
  cdf        =<math>\Gamma\!\left(\frac{\nu}{2},\frac{1}{2x}\right)
\bigg/\, \Gamma\!\left(\frac{\nu}{2}\right)\!</math>|
  mean      =<math>\frac{1}{\nu-2}\!</math> for <math>\nu >2\!</math>|
  median    =|
  mode      =<math>\frac{1}{\nu+2}\!</math>|
  variance  =<math>\frac{2}{(\nu-2)^2 (\nu-4)}\!</math> for <math>\nu >4\!</math>|
  skewness  =<math>\frac{4}{\nu-6}\sqrt{2(\nu-4)}\!</math> for <math>\nu >6\!</math>|
  kurtosis  =<math>\frac{12(5\nu-22)}{(\nu-6)(\nu-8)}\!</math> for <math>\nu >8\!</math>|
  entropy    =<math>\frac{\nu}{2}
\!+\!\ln\!\left(\frac{1}{2}\Gamma\!\left(\frac{\nu}{2}\right)\right)</math>
<math>\!-\!\left(1\!+\!\frac{\nu}{2}\right)\psi\!\left(\frac{\nu}{2}\right)</math>|
  mgf        =<math>\frac{2}{\Gamma(\frac{\nu}{2})}
\left(\frac{-t}{2i}\right)^{\!\!\frac{\nu}{4}}
K_{\frac{\nu}{2}}\!\left(\sqrt{-2t}\right)</math>; does not exist as [[real number|real valued]] function|
  char      =<math>\frac{2}{\Gamma(\frac{\nu}{2})}
\left(\frac{-it}{2}\right)^{\!\!\frac{\nu}{4}}
K_{\frac{\nu}{2}}\!\left(\sqrt{-2it}\right)</math>|
}}
 
In [[probability and statistics]], the '''inverse-chi-squared distribution''' (or '''inverted-chi-square distribution'''<ref name=BS>Bernardo, J.M.; Smith, A.F.M. (1993) ''Bayesian Theory'' ,Wiley (pages 119, 431) ISBN 0-471-49464-X</ref>)  is a [[continuous probability distribution]] of a positive-valued random variable. It is closely related to the [[chi-squared distribution]] and its specific importance is that it arises in the application of [[Bayesian inference]] to the [[normal distribution]], where it can be used as the [[prior distribution|prior]] and [[posterior distribution]] for an unknown [[variance]].
 
==Definition==
 
The inverse-chi-squared distribution (or inverted-chi-square distribution<ref name=BS/> )  is the [[probability distribution]] of a random variable whose [[multiplicative inverse]] (reciprocal) has a [[chi-squared distribution]]. It is also often defined as the distribution of a random variable whose reciprocal divided by its degrees of freedom is a chi-squared distribution. That is, if <math>X</math> has the chi-squared distribution with <math>\nu</math> [[degrees of freedom (statistics)|degrees of freedom]], then according to the first definition, <math>1/X</math> has the inverse-chi-squared distribution with <math>\nu</math> degrees of freedom; while according to the second definition, <math>\nu/X</math> has the inverse-chi-squared distribution with <math>\nu</math> degrees of freedom. Only the first definition will usually be covered in this article.
 
The first definition yields a [[probability density function]] given by
 
:<math>
f_1(x; \nu) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)}\,x^{-\nu/2-1}  e^{-1/(2 x)},
</math>
 
while the second definition yields the density function
 
:<math>
f_2(x; \nu) =
\frac{(\nu/2)^{\nu/2}}{\Gamma(\nu/2)}  x^{-\nu/2-1}  e^{-\nu/(2 x)} .
</math>
 
In both cases, <math>x>0</math> and <math>\nu</math> is the [[degrees of freedom (statistics)|degrees of freedom]] parameter. Further, <math>\Gamma</math> is the [[gamma function]]. Both definitions are special cases of the [[scaled-inverse-chi-squared distribution]]. For the first definition the variance of the distribution is <math>\sigma^2=1/\nu ,</math> while for the second definition <math>\sigma^2=1</math>.
 
==Related distributions==
 
*[[chi-squared distribution|chi-squared]]: If <math>X \thicksim \chi^2(\nu)</math> and <math>Y = \frac{1}{X}</math>, then <math>Y \thicksim \text{Inv-}\chi^2(\nu)</math>
*[[scaled-inverse-chi-squared distribution|scaled-inverse chi-squared]]: If <math>X \thicksim \text{Scale-inv-}\chi^2(\nu, 1/\nu) \, </math>, then <math>X \thicksim \text{inv-}\chi^2(\nu)</math>
*[[Inverse-gamma distribution|Inverse gamma]] with <math>\alpha = \frac{\nu}{2}</math> and <math>\beta = \frac{1}{2}</math>
 
==See also==
*[[Scaled-inverse-chi-squared distribution]]
*[[Inverse-Wishart distribution]]
 
==References==
{{reflist}}
 
==External links==
* [http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/geoR/html/InvChisquare.html InvChisquare] in geoR package for the R Language.
 
{{ProbDistributions|continuous-semi-infinite}}
 
[[Category:Continuous distributions]]
[[Category:Exponential family distributions]]
[[Category:Probability distributions with non-finite variance]]
[[Category:Probability distributions]]

Latest revision as of 07:15, 17 July 2014

Hi!
My name is Osvaldo and I'm a 27 years old girl from Varzea Grande.

Also visit my homepage - FIFA 15 coin hack