Restricted representation: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>TurionTzukosson
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], the '''Cayley transform''', named after [[Arthur Cayley]], is any of a cluster of related things. As originally described by {{Harvtxt|Cayley|1846}}, the Cayley transform is a mapping between [[skew-symmetric matrix|skew-symmetric matrices]] and [[special orthogonal matrix|special orthogonal matrices]]. In [[complex analysis]], the Cayley transform is a [[conformal map]]ping {{Harv|Rudin|1987}} in which the image of the upper complex half-plane is the unit disk {{Harv|Remmert|1991|pp=82ff, 275}}. And in the theory of [[Hilbert space]]s, the Cayley transform is a mapping between [[linear operator]]s {{Harv|Nikol’skii|2001}}.
I'm Victorina and was born on 1 March 1970. My hobbies are Book collecting and Amateur radio.<br><br>Also visit my web site: propane and charcoal grill [[http://smallpropanegrilltips.weebly.com smallpropanegrilltips.weebly.com]]
 
== Matrix map ==
Among ''n''×''n'' [[square matrix|square matrices]] over the [[real number|reals]], with ''I'' the identity matrix, let ''A'' be any [[skew-symmetric matrix]] (so that ''A''<sup>T</sup>&nbsp;= −''A''). Then ''I''&nbsp;+&nbsp;''A'' is [[invertible matrix|invertible]], and the Cayley transform
 
:<math> Q = (I - A)(I + A)^{-1} \,\!</math>
 
produces an [[orthogonal matrix]], ''Q'' (so that ''Q''<sup>T</sup>''Q''&nbsp;= ''I''). The matrix multiplication in the definition of ''Q'' above is commutative, so ''Q'' can be alternatively defined as <math> Q = (I + A)^{-1}(I - A)</math>. In fact, ''Q'' must have determinant +1, so is special orthogonal. Conversely, let ''Q'' be any orthogonal matrix which does not have −1 as an [[eigenvalue]]; then
 
:<math> A = (I - Q)(I + Q)^{-1} \,\!</math>
 
is a skew-symmetric matrix. The condition on ''Q'' automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices. Some authors use a superscript "c" to denote this transform, writing ''Q''&nbsp;= ''A''<sup>c</sup> and ''A''&nbsp;= ''Q''<sup>c</sup>.
 
This version of the Cayley transform is its own functional inverse, so that ''A''&nbsp;= (''A''<sup>c</sup>)<sup>c</sup> and ''Q''&nbsp;= (''Q''<sup>c</sup>)<sup>c</sup>. A slightly different form is also seen {{Harv|Golub|Van Loan|1996}}, requiring different mappings in each direction (and dropping the superscript notation):
 
:<math>\begin{align}
Q &{}= (I - A)^{-1}(I + A) \\
A &{}= (Q - I)(Q + I)^{-1}
\end{align}</math>
 
The mappings may also be written with the order of the factors reversed {{Harv|Courant|Hilbert|1989|loc=Ch.VII,&nbsp;&sect;7.2}}; however, ''A'' always commutes with (μ''I''&nbsp;±&nbsp;''A'')<sup>−1</sup>, so the reordering does not affect the definition.
 
=== Examples ===
In the 2×2 case, we have
:<math>
\begin{bmatrix} 0 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 0 \end{bmatrix}
\lrarr
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} .
</math>
The 180° rotation matrix, −''I'', is excluded, though it is the limit as tan&nbsp;<sup>θ</sup>⁄<sub>2</sub> goes to infinity.
 
In the 3×3 case, we have
:<math>
\begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix}
\lrarr
\frac{1}{K}
\begin{bmatrix}
  w^2+x^2-y^2-z^2 & 2 (x y-w z) & 2 (w y+x z) \\
  2 (x y+w z) & w^2-x^2+y^2-z^2 & 2 (y z-w x) \\
  2 (x z-w y) & 2 (w x+y z) & w^2-x^2-y^2+z^2
\end{bmatrix} ,
</math>
 
where ''K''&nbsp;=&nbsp;''w''<sup>2</sup>&nbsp;+&nbsp;''x''<sup>2</sup>&nbsp;+&nbsp;''y''<sup>2</sup>&nbsp;+&nbsp;''z''<sup>2</sup>, and where ''w''&nbsp;=&nbsp;1. This we recognize as the rotation matrix corresponding to [[quaternion]]
 
:<math> w + \bold{i} x + \bold{j} y + \bold{k} z \,\!</math>
 
(by a formula Cayley had published the year before), except scaled so that ''w''&nbsp;= 1 instead of the usual scaling so that ''w''<sup>2</sup>&nbsp;+&nbsp;''x''<sup>2</sup>&nbsp;+&nbsp;''y''<sup>2</sup>&nbsp;+&nbsp;''z''<sup>2</sup>&nbsp;=&nbsp;1. Thus vector (''x'',''y'',''z'') is the unit axis of rotation scaled by tan&nbsp;<sup>θ</sup>⁄<sub>2</sub>. Again excluded are 180° rotations, which in this case are all ''Q'' which are [[symmetric matrix|symmetric]] (so that ''Q''<sup>T</sup>&nbsp;= ''Q'').
 
=== Other matrices ===
We can extend the mapping to [[complex number|complex]] matrices by substituting "[[unitary matrix|unitary]]" for "orthogonal" and "[[skew-Hermitian matrix|skew-Hermitian]]" for "skew-symmetric", the difference being that the transpose (·<sup>T</sup>) is replaced by the [[conjugate transpose]] (·<sup>H</sup>). This is consistent with replacing the standard real [[inner product]] with the standard complex inner product. In fact, we may extend the definition further with choices of [[Hermitian adjoint|adjoint]] other than transpose or conjugate transpose.
 
Formally, the definition only requires some invertibility, so we can substitute for ''Q'' any matrix ''M'' whose eigenvalues do not include −1. For example, we have
:<math>
\begin{bmatrix} 0 & -a & ab - c \\ 0 & 0 & -b \\ 0 & 0 & 0 \end{bmatrix}
\lrarr
\begin{bmatrix} 1 & 2a & 2c \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{bmatrix} .
</math>
We remark that ''A'' is skew-symmetric (respectively, skew-Hermitian) if and only if ''Q'' is orthogonal (respectively, unitary) with no eigenvalue −1.
 
== Conformal map ==
[[Image:Cayley transform in complex plane.png|thumb|right| 300px|Cayley transform of upper complex half-plane to unit disk]]
In [[complex analysis]], the Cayley transform is a [[mapping (mathematics)|mapping]] of the [[complex plane]] to itself, given by
 
:<math> \operatorname{W} \colon z \mapsto \frac{z-\bold{i}}{z+\bold{i}} . </math>
 
This is a [[linear fractional transformation]], and can be extended to an [[automorphism]] of the [[Riemann sphere]] (the [[complex plane]] augmented with a point at infinity).
 
Of particular note are the following facts:
 
* W maps the upper half plane of '''C''' [[conformal mapping|conformally]] onto the unit disc of '''C'''.
* W maps the real line '''R''' [[injective]]ly into the [[circle group|unit circle]] '''T''' (complex numbers of [[absolute value]] 1).  The image of '''R'''  is '''T''' with 1 removed.
* W maps the upper imaginary axis '''i''' <nowiki>[0, &infin;)</nowiki> [[bijection|bijectively]] onto the half-open interval <nowiki>[−1, +1)</nowiki>.
* W maps 0 to −1.
* W maps the point at infinity to 1.
* W maps −'''i''' to the point at infinity (so W has a [[pole (complex analysis)|pole]] at −'''i''').
* W maps −1 to '''i'''.
* W maps both <sup>1</sup>⁄<sub>2</sub>(−1&nbsp;+&nbsp;√3)(−1&nbsp;+&nbsp;'''i''') and <sup>1</sup>⁄<sub>2</sub>(1&nbsp;+&nbsp;√3)(1&nbsp;−&nbsp;'''i''') to themselves.
 
== Operator map ==
An infinite-dimensional version of an [[inner product space]] is a [[Hilbert space]], and we can no longer speak of [[matrix (mathematics)|matrices]]. However, matrices are merely representations of [[linear operator]]s, and these we still have. So, generalizing both the matrix mapping and the complex plane mapping, we may define a Cayley transform of operators.
:<math>\begin{align}
U &{}= (A - \bold{i}I) (A + \bold{i}I)^{-1} \\
A &{}= \bold{i}(I + U) (I - U)^{-1}
\end{align}</math>
Here the domain of ''U'', dom&nbsp;''U'', is (''A''+'''i'''''I'')&nbsp;dom&nbsp;''A''. See [[self-adjoint operator#Extensions of symmetric operators|self-adjoint operator]] for further details.
 
== See also ==
* [[Bilinear transform]]
 
* [[Extensions of symmetric operators]]
 
== References ==
 
* {{Citation
| last=Cayley
| first=Arthur
| author-link=Arthur Cayley
| year=1846
| title=Sur quelques propriétés des déterminants gauches
| journal=[[Journal für die reine und angewandte Mathematik]]
| volume=32
| pages=119–123
| url=http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?ht=VIEW&did=D268141
| issn=0075-4102
}}; reprinted as article 52 (pp.&nbsp;332–336) in {{Citation
| last=Cayley
| first=Arthur
| author-link=Arthur Cayley
| year=1889
| title=The collected mathematical papers of Arthur Cayley
| publisher=[[Cambridge University Press]]
| volume=I (1841–1853)
| pages=332–336
| isbn=<!-- none given -->
| url=http://www.hti.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;rgn=full%20text;idno=ABS3153.0001.001;didno=ABS3153.0001.001;view=image;seq=00000349
}}
* {{Citation
  | last1=Courant
  | first1=Richard
  | author1-link=Richard Courant
  | last2=Hilbert
  | first2=David
  | author2-link=David Hilbert
  | title=Methods of Mathematical Physics
  | volume=1
  | edition=1st English
  | publisher=Wiley-Interscience
  | year=1989
  | place=New York
  | isbn=978-0-471-50447-4
}}
* {{Citation
  | last1=Golub
  | first1=Gene H.
  | author1-link=Gene H. Golub
  | last2=Van Loan
  | first2=Charles F.
  | author2-link=Charles F. Van Loan
  | title=Matrix Computations
  | edition=3rd
  | publisher=Johns Hopkins University Press
  | year=1996
  | place=Baltimore
  | isbn=978-0-8018-5414-9
}}
* {{Citation
| last=Nikol’skii
| first=N. K.
| contribution=Cayley transform
| contribution-url=http://www.encyclopediaofmath.org/index.php?title=Cayley_transform&oldid=12556
| title=[[Encyclopaedia of Mathematics]]
| year=2001
| publisher=[[Springer-Verlag]]
| isbn=978-1-4020-0609-8<!-- uncertain, web page gives 1402006098, which does not validate -->
}}; translated from the Russian {{Citation
| editor-last=Vinogradov
| editor-first=I. M.
| editor-link=Ivan Matveyevich Vinogradov
| title=Matematicheskaya Entsiklopediya
| place=Moscow
| publisher=Sovetskaya Entsiklopediya
| year=1977
}}
* {{Citation<!-- courtesy of [[User:CSTAR|]] -->
| last=Remmert
| first=Reinhold
| author-link=Reinhold Remmert
| translator=Robert B. Burckel (trans.)<!-- template does not provide for this -->
| title=Theory of Complex Functions
| series=Graduate Texts in Mathematics
| volume='''122''' of ''Graduate Texts in Mathematics'' (''Readings in Mathematics'')<!-- compensate for lack of template "series" support -->
| year=1991
| publisher=[[Springer-Verlag]]
| place=New York
| isbn=978-0-387-97195-7
}}, translated by Robert B. Burckel from {{Citation
| unused_data=Grundwissen Mathematik 5
| last=Remmert
| first=Reinhold
| author-link=Reinhold Remmert
| title=Funktionentheorie I
| edition=2nd
| year=1989
| publisher=[[Springer-Verlag]]
| isbn=978-3-540-51238-7
}}
* {{Citation
| last=Rudin
| first=Walter
| author-link=Walter Rudin
| title=Real and Complex Analysis
| edition=3rd<!-- date was 1966, no edition given -->
| publisher=McGraw-Hill
| year=1987<!-- March 1 -->
| isbn=978-0-07-100276-9
}}
 
== External links ==
* {{PlanetMath
| urlname=CayleyTransform
| title=Cayley's parameterization of orthogonal matrices
| id=6535
}}
 
[[Category:Conformal mapping]]
[[Category:Transforms]]
 
[[ru:Преобразование Мёбиуса#Примеры]]

Latest revision as of 23:32, 14 May 2014

I'm Victorina and was born on 1 March 1970. My hobbies are Book collecting and Amateur radio.

Also visit my web site: propane and charcoal grill [smallpropanegrilltips.weebly.com]