|
|
Line 1: |
Line 1: |
| {{Trigonometry}}
| | Deer Hunter 2014 Cheats is the top decide for the gamer. It's readily the only option for anybody who wants to crank out free Gold, Bucks because of its easy interface however subtle components that surely works for all in spite of variations or gadget.<br><br>I hunt huge woods mountains with fields beneath, there feeding area at evening. So what I did was to test the trails coming from feeding and going to bedding area. There was six good trails. I set my game trail digicam's up just inside the woods line to check on deer movement entering the feeding space for three day's. Then moved them deep into the woods for the subsequent 3 day's to heavy cover to see once they start to [http://Www.google.co.uk/search?hl=en&gl=us&tbm=nws&q=transfer&gs_l=news transfer]. Two trails have been used by 2 good bucks "10 pointers." The large guy by no means seemed to make use of the identical path twice and moved at different occasions.<br><br>The a lot-touted co-op Membership Hunt mode, on the other hand, is just complicated. Supposedly it allows gamers to work together with a view to full hunts on a global scale, but it's not truly accessible. At the least not without paying actual money for a stack of permits. I don't know why anyone would assume forcing gamers to pay for cooperative hunts is a good suggestion, honestly. Of course it's completely possible that it is open to all and I'm just missing one thing, however after digging by means of the game for some time and doing a little on-line detective work all I've managed to search out are extra players asking the identical question.<br><br>Deer Hunter 2014 is mainly a group of straightforward hunts for various varieties of wild animals. It's kind of much less concerned than most other looking sims after all - more than likely to cater to the choose-up-and-play cell viewers. Moderately than tracking targets by means of the underbrush across acres of simulated woods, gamers merely strafe left and right throughout a [http://Answers.Yahoo.com/search/search_result?p=limited&submit-go=Search+Y!+Answers limited] space to get a greater view of their prey. As an alternative of focusing on the chase, it is all in regards to the kill shot. Where the animal is hit (head, coronary heart, lungs, and so forth) could make all the difference.<br><br>Deer Hunter 2014 Hack Software works in 100% on ALL OS which is able to provide you with a free gold and cash. Our Deer Hunter 2014 Hack Device is extremely simple to use, with our professional pleasant interface even baby can use it ! Our software program is full automated you do not want replace it manually Simply comply with the directions written below and all the pieces will work tremendous. With our Deer Hunter 2014 Hack Tool you can save numerous $$$. Do not waste your actual money for video games !For our software program we are utilizing some secret exploit technique so it's one hundred percent undetectable ! Your account is safe! And one of the best factor is that is completely free.<br><br>If you enjoyed this post and you would certainly such as to get more information pertaining to deer hunter 2014 hack android no root ([https://www.facebook.com/pages/Deer-Hunter-2014-Hack/259420840891111 www.facebook.com]) kindly visit our own page. |
| The following is a list of [[integral]]s ([[antiderivative]] [[function (mathematics)|function]]s) of [[trigonometric functions]]. For antiderivatives involving both exponential and trigonometric functions, see [[List of integrals of exponential functions]]. For a complete list of antiderivative functions, see [[lists of integrals]]. See also [[trigonometric integral]].
| |
| | |
| Generally, if the function <math>\sin(x)</math> is any trigonometric function, and <math>\cos(x)</math> is its derivative,
| |
| | |
| : <math>\int a\cos nx\;\mathrm{d}x = \frac{a}{n}\sin nx+C</math>
| |
| | |
| In all formulas the constant ''a'' is assumed to be nonzero, and ''C'' denotes the [[constant of integration]].
| |
| | |
| == Integrals involving only [[sine]] ==
| |
| | |
| : <math>\int\sin ax\;\mathrm{d}x = -\frac{1}{a}\cos ax+C\,\!</math> | |
| <br />
| |
| : <math>\int\sin^2 {ax}\;\mathrm{d}x = \frac{x}{2} - \frac{1}{4a} \sin 2ax +C= \frac{x}{2} - \frac{1}{2a} \sin ax\cos ax +C\!</math>
| |
| <br />
| |
| : <math>\int\sin^3 {ax}\;\mathrm{d}x = \frac{\cos 3ax}{12a} - \frac{3 \cos ax}{4a} +C\!</math>
| |
| | |
| : <math>\int x\sin^2 {ax}\;\mathrm{d}x = \frac{x^2}{4} - \frac{x}{4a} \sin 2ax - \frac{1}{8a^2} \cos 2ax +C\!</math>
| |
| <br />
| |
| : <math>\int x^2\sin^2 {ax}\;\mathrm{d}x = \frac{x^3}{6} - \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax - \frac{x}{4a^2} \cos 2ax +C\!</math>
| |
| <br />
| |
| : <math>\int\sin b_1x\sin b_2x\;\mathrm{d}x = \frac{\sin((b_2-b_1)x)}{2(b_2-b_1)}-\frac{\sin((b_1+b_2)x)}{2(b_1+b_2)}+C \qquad\mbox{(for }|b_1|\neq|b_2|\mbox{)}\,\!</math>
| |
| <br />
| |
| : <math>\int\sin^n {ax}\;\mathrm{d}x = -\frac{\sin^{n-1} ax\cos ax}{na} + \frac{n-1}{n}\int\sin^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n>2\mbox{)}\,\!</math>
| |
| <br />
| |
| : <math>\int\frac{\mathrm{d}x}{\sin ax} = \frac{1}{a}\ln \left|\tan\frac{ax}{2}\right|+C</math>
| |
| <br /> | |
| : <math>\int\frac{\mathrm{d}x}{\sin^n ax} = \frac{\cos ax}{a(1-n) \sin^{n-1} ax}+\frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\sin^{n-2}ax} \qquad\mbox{(for }n>1\mbox{)}\,\!</math>
| |
| <br /> | |
| : <math>\int x\sin ax\;\mathrm{d}x = \frac{\sin ax}{a^2}-\frac{x\cos ax}{a}+C\,\!</math>
| |
| <br />
| |
| : <math>\int x^n\sin ax\;\mathrm{d}x = -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\;\mathrm{d}x = \sum_{k=0}^{2k\leq n} (-1)^{k+1} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \cos ax +\sum_{k=0}^{2k+1\leq n}(-1)^k \frac{x^{n-1-2k}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \sin ax \qquad\mbox{(for }n>0\mbox{)}\,\!</math>
| |
| <br />
| |
| <br />
| |
| : <math>\int\frac{\sin ax}{x} \mathrm{d}x = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C\,\!</math>
| |
| <br />
| |
| : <math>\int\frac{\sin ax}{x^n} \mathrm{d}x = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1}\int\frac{\cos ax}{x^{n-1}} \mathrm{d}x\,\!</math>
| |
| <br />
| |
| : <math>\int\frac{\mathrm{d}x}{1\pm\sin ax} = \frac{1}{a}\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)+C</math>
| |
| <br />
| |
| : <math>\int\frac{x\;\mathrm{d}x}{1+\sin ax} = \frac{x}{a}\tan\left(\frac{ax}{2} - \frac{\pi}{4}\right)+\frac{2}{a^2}\ln\left|\cos\left(\frac{ax}{2}-\frac{\pi}{4}\right)\right|+C</math>
| |
| <br />
| |
| : <math>\int\frac{x\;\mathrm{d}x}{1-\sin ax} = \frac{x}{a}\cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)+\frac{2}{a^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{ax}{2}\right)\right|+C</math>
| |
| <br />
| |
| : <math>\int\frac{\sin ax\;\mathrm{d}x}{1\pm\sin ax} = \pm x+\frac{1}{a}\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)+C</math>
| |
| | |
| == Integrands involving only [[cosine]] ==
| |
| | |
| : <math>\int\cos ax\;\mathrm{d}x = \frac{1}{a}\sin ax+C\,\!</math>
| |
| | |
| : <math>\int\cos^2 {ax}\;\mathrm{d}x = \frac{x}{2} + \frac{1}{4a} \sin 2ax +C = \frac{x}{2} + \frac{1}{2a} \sin ax\cos ax +C\!</math>
| |
| | |
| : <math>\int\cos^n ax\;\mathrm{d}x = \frac{\cos^{n-1} ax\sin ax}{na} + \frac{n-1}{n}\int\cos^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n>0\mbox{)}\,\!</math>
| |
| | |
| : <math>\int x\cos ax\;\mathrm{d}x = \frac{\cos ax}{a^2} + \frac{x\sin ax}{a}+C\,\!</math>
| |
| | |
| : <math>\int x^2\cos^2 {ax}\;\mathrm{d}x = \frac{x^3}{6} + \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax + \frac{x}{4a^2} \cos 2ax +C\!</math>
| |
| | |
| : <math>\int x^n\cos ax\;\mathrm{d}x = \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\;\mathrm{d}x\,= \sum_{k=0}^{2k+1\leq n} (-1)^{k} \frac{x^{n-2k-1}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \cos ax +\sum_{k=0}^{2k\leq n}(-1)^{k} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \sin ax \!</math>
| |
| | |
| : <math>\int\frac{\cos ax}{x} \mathrm{d}x = \ln|ax|+\sum_{k=1}^\infty (-1)^k\frac{(ax)^{2k}}{2k\cdot(2k)!}+C\,\!</math>
| |
| | |
| : <math>\int\frac{\cos ax}{x^n} \mathrm{d}x = -\frac{\cos ax}{(n-1)x^{n-1}}-\frac{a}{n-1}\int\frac{\sin ax}{x^{n-1}} \mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{\cos ax} = \frac{1}{a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1) \cos^{n-1} ax} + \frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2} ax} \qquad\mbox{(for }n>1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{1+\cos ax} = \frac{1}{a}\tan\frac{ax}{2}+C\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{1-\cos ax} = -\frac{1}{a}\cot\frac{ax}{2}+C</math>
| |
| | |
| : <math>\int\frac{x\;\mathrm{d}x}{1+\cos ax} = \frac{x}{a}\tan\frac{ax}{2} + \frac{2}{a^2}\ln\left|\cos\frac{ax}{2}\right|+C</math>
| |
| | |
| : <math>\int\frac{x\;\mathrm{d}x}{1-\cos ax} = -\frac{x}{a}\cot\frac{ax}{2}+\frac{2}{a^2}\ln\left|\sin\frac{ax}{2}\right|+C</math>
| |
| | |
| : <math>\int\frac{\cos ax\;\mathrm{d}x}{1+\cos ax} = x - \frac{1}{a}\tan\frac{ax}{2}+C\,\!</math>
| |
| | |
| : <math>\int\frac{\cos ax\;\mathrm{d}x}{1-\cos ax} = -x-\frac{1}{a}\cot\frac{ax}{2}+C\,\!</math>
| |
| | |
| : <math>\int\cos a_1x\cos a_2x\;\mathrm{d}x = \frac{\sin(a_2-a_1)x}{2(a_2-a_1)}+\frac{\sin(a_2+a_1)x}{2(a_2+a_1)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!</math>
| |
| | |
| == Integrands involving only [[tangent (trigonometric function)|tangent]] ==
| |
| | |
| : <math>\int\tan ax\;\mathrm{d}x = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!</math>
| |
| | |
| :<math>\int \tan^2{x} \, \mathrm{d}x = \tan{x} - x +C</math>
| |
| | |
| : <math>\int\tan^n ax\;\mathrm{d}x = \frac{1}{a(n-1)}\tan^{n-1} ax-\int\tan^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{q \tan ax + p} = \frac{1}{p^2 + q^2}(px + \frac{q}{a}\ln|q\sin ax + p\cos ax|)+C \qquad\mbox{(for }p^2 + q^2\neq 0\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{\tan ax - 1} = -\frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!</math>
| |
| | |
| : <math>\int\frac{\tan ax\;\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} - \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!</math>
| |
| | |
| : <math>\int\frac{\tan ax\;\mathrm{d}x}{\tan ax - 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!</math>
| |
| | |
| == Integrands involving only [[secant]] ==
| |
| : ''See [[Integral of the secant function]].''
| |
| | |
| :<math>\int \sec{ax} \, \mathrm{d}x = \frac{1}{a}\ln{\left| \sec{ax} + \tan{ax}\right|}+C</math>
| |
| | |
| :<math>\int \sec^2{x} \, \mathrm{d}x = \tan{x}+C</math>
| |
| | |
| :<math>\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C.</math>
| |
| | |
| | |
| :<math>\int \sec^n{ax} \, \mathrm{d}x = \frac{\sec^{n-2}{ax} \tan {ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!</math>
| |
| | |
| :<math>\int \frac{\mathrm{d}x}{\sec{x} + 1} = x - \tan{\frac{x}{2}}+C</math>
| |
| | |
| | |
| <!-- In the 17th century, the integral of the secant function was the subject of a well-known conjecture posed in the 1640s by Henry Bond. The problem was solved by [[Isaac Barrow]].<ref>V. Frederick Rickey and Philip M. Tuchinsky, "An Application of Geography to Mathematics: History of the Integral of the Secant", ''[[Mathematics Magazine]]'', volume 53, number 3, May 2980, pages 162–166</ref> It was originally for the purposes of [[cartography]] that this was needed. -->
| |
| | |
| == Integrands involving only [[cosecant]] ==
| |
| | |
| :<math>\int \csc{ax} \, \mathrm{d}x = -\frac{1}{a}\ln{\left| \csc{ax}+\cot{ax}\right|}+C</math>
| |
| | |
| :<math>\int \csc^2{x} \, \mathrm{d}x = -\cot{x}+C</math>
| |
| | |
| :<math>\int \csc^n{ax} \, \mathrm{d}x = -\frac{\csc^{n-1}{ax} \cos{ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!</math>
| |
| | |
| :<math>\int \frac{\mathrm{d}x}{\csc{x} + 1} = x - \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}+C</math>
| |
| | |
| :<math>\int \frac{\mathrm{d}x}{\csc{x} - 1} = \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}-x+C</math>
| |
| | |
| == Integrands involving only [[cotangent]] ==
| |
| | |
| :<math>\int\cot ax\;\mathrm{d}x = \frac{1}{a}\ln|\sin ax|+C\,\!</math> | |
| | |
| : <math>\int\cot^n ax\;\mathrm{d}x = -\frac{1}{a(n-1)}\cot^{n-1} ax - \int\cot^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{1 + \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax+1}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{1 - \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax-1}\,\!</math>
| |
| | |
| == Integrands involving both [[sine]] and [[cosine]] == | |
| | |
| : <math>\int\frac{\mathrm{d}x}{\cos ax\pm\sin ax} = \frac{1}{a\sqrt{2}}\ln\left|\tan\left(\frac{ax}{2}\pm\frac{\pi}{8}\right)\right|+C</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{(\cos ax\pm\sin ax)^2} = \frac{1}{2a}\tan\left(ax\mp\frac{\pi}{4}\right)+C</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{(\cos x + \sin x)^n} = \frac{1}{n-1}\left(\frac{\sin x - \cos x}{(\cos x + \sin x)^{n - 1}} - 2(n - 2)\int\frac{\mathrm{d}x}{(\cos x + \sin x)^{n-2}} \right)</math>
| |
| | |
| : <math>\int\frac{\cos ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} + \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C</math>
| |
| | |
| : <math>\int\frac{\cos ax\;\mathrm{d}x}{\cos ax - \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C</math>
| |
| | |
| : <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C</math>
| |
| | |
| : <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax - \sin ax} = -\frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C</math>
| |
| | |
| : <math>\int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1+\cos ax)} = -\frac{1}{4a}\tan^2\frac{ax}{2}+\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C</math>
| |
| | |
| : <math>\int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1-\cos ax)} = -\frac{1}{4a}\cot^2\frac{ax}{2}-\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C</math>
| |
| | |
| : <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1+\sin ax)} = \frac{1}{4a}\cot^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)+\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C</math>
| |
| | |
| : <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1-\sin ax)} = \frac{1}{4a}\tan^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)-\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C</math>
| |
| | |
| : <math>\int\sin ax\cos ax\;\mathrm{d}x = -\frac{1}{2a}\cos^2 ax +C\,\!</math>
| |
| | |
| : <math>\int\sin a_1x\cos a_2x\;\mathrm{d}x = -\frac{\cos((a_1-a_2)x)}{2(a_1-a_2)} -\frac{\cos((a_1+a_2)x)}{2(a_1+a_2)} +C\qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\sin^n ax\cos ax\;\mathrm{d}x = \frac{1}{a(n+1)}\sin^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\sin ax\cos^n ax\;\mathrm{d}x = -\frac{1}{a(n+1)}\cos^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\sin^n ax\cos^m ax\;\mathrm{d}x = -\frac{\sin^{n-1} ax\cos^{m+1} ax}{a(n+m)}+\frac{n-1}{n+m}\int\sin^{n-2} ax\cos^m ax\;\mathrm{d}x \qquad\mbox{(for }m,n>0\mbox{)}\,\!</math>
| |
| | |
| : also: <math>\int\sin^n ax\cos^m ax\;\mathrm{d}x = \frac{\sin^{n+1} ax\cos^{m-1} ax}{a(n+m)} + \frac{m-1}{n+m}\int\sin^n ax\cos^{m-2} ax\;\mathrm{d}x \qquad\mbox{(for }m,n>0\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{\sin ax\cos ax} = \frac{1}{a}\ln\left|\tan ax\right|+C</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{\sin ax\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin ax\cos^{n-2} ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\mathrm{d}x}{\sin^n ax\cos ax} = -\frac{1}{a(n-1)\sin^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin^{n-2} ax\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\sin^2 ax\;\mathrm{d}x}{\cos ax} = -\frac{1}{a}\sin ax+\frac{1}{a}\ln\left|\tan\left(\frac{\pi}{4}+\frac{ax}{2}\right)\right|+C</math>
| |
| | |
| : <math>\int\frac{\sin^2 ax\;\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1)\cos^{n-1}ax}-\frac{1}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2}ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos ax} = -\frac{\sin^{n-1} ax}{a(n-1)} + \int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = \frac{\sin^{n+1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-m+2}{m-1}\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math>
| |
| | |
| : also: <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = -\frac{\sin^{n-1} ax}{a(n-m)\cos^{m-1} ax}+\frac{n-1}{n-m}\int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!</math>
| |
| | |
| : also: <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = \frac{\sin^{n-1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-1}{m-1}\int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\cos ax\;\mathrm{d}x}{\sin^n ax} = -\frac{1}{a(n-1)\sin^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| : <math>\int\frac{\cos^2 ax\;\mathrm{d}x}{\sin ax} = \frac{1}{a}\left(\cos ax+\ln\left|\tan\frac{ax}{2}\right|\right) +C</math>
| |
| | |
| : <math>\int\frac{\cos^2 ax\;\mathrm{d}x}{\sin^n ax} = -\frac{1}{n-1}\left(\frac{\cos ax}{a\sin^{n-1} ax)}+\int\frac{\mathrm{d}x}{\sin^{n-2} ax}\right) \qquad\mbox{(for }n\neq 1\mbox{)}</math>
| |
| | |
| : <math>\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = -\frac{\cos^{n+1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-m+2}{m-1}\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math>
| |
| | |
| : also: <math>\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = \frac{\cos^{n-1} ax}{a(n-m)\sin^{m-1} ax} + \frac{n-1}{n-m}\int\frac{\cos^{n-2} ax\;\mathrm{d}x}{\sin^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!</math>
| |
| | |
| : also: <math>\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = -\frac{\cos^{n-1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-1}{m-1}\int\frac{\cos^{n-2} ax\;\mathrm{d}x}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math>
| |
| | |
| == Integrands involving both [[sine]] and [[tangent]] ==
| |
| | |
| : <math>\int \sin ax \tan ax\;\mathrm{d}x = \frac{1}{a}(\ln|\sec ax + \tan ax| - \sin ax)+C\,\!</math>
| |
| | |
| : <math>\int\frac{\tan^n ax\;\mathrm{d}x}{\sin^2 ax} = \frac{1}{a(n-1)}\tan^{n-1} (ax) +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| == Integrands involving both [[cosine]] and [[tangent]] ==
| |
| | |
| : <math>\int\frac{\tan^n ax\;\mathrm{d}x}{\cos^2 ax} = \frac{1}{a(n+1)}\tan^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math> | |
| | |
| == Integrals containing both [[sine]] and [[cotangent]] ==
| |
| | |
| : <math>\int\frac{\cot^n ax\;\mathrm{d}x}{\sin^2 ax} = -\frac{1}{a(n+1)}\cot^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math>
| |
| | |
| == Integrands involving both [[cosine]] and [[cotangent]] ==
| |
| | |
| : <math>\int\frac{\cot^n ax\;\mathrm{d}x}{\cos^2 ax} = \frac{1}{a(1-n)}\tan^{1-n} ax +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math>
| |
| | |
| == Integrands involving both [[secant]] and [[tangent]] ==
| |
| | |
| : <math> \int\sec x \tan x \ dx= \sec x + C</math>
| |
| | |
| == Integrals with symmetric limits ==
| |
| | |
| : <math>\int_{{-c}}^{{c}}\sin {x}\;\mathrm{d}x = 0 \!</math>
| |
| : <math>\int_{{-c}}^{{c}}\cos {x}\;\mathrm{d}x = 2\int_{{0}}^{{c}}\cos {x}\;\mathrm{d}x = 2\int_{{-c}}^{{0}}\cos {x}\;\mathrm{d}x = 2\sin {c} \!</math>
| |
| : <math>\int_{{-c}}^{{c}}\tan {x}\;\mathrm{d}x = 0 \!</math>
| |
| : <math>\int_{-\frac{a}{2}}^{\frac{a}{2}} x^2\cos^2 {\frac{n\pi x}{a}}\;\mathrm{d}x = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2} \qquad\mbox{(for }n=1,3,5...\mbox{)}\,\!</math>
| |
| : <math>\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;\mathrm{d}x = \frac{a^3(n^2\pi^2-6(-1)^n)}{24n^2\pi^2} = \frac{a^3}{24} (1-6\frac{(-1)^n}{n^2\pi^2}) \qquad\mbox{(for }n=1,2,3,...\mbox{)}\,\!</math>
| |
| | |
| == Integral over a full circle==
| |
| | |
| : <math>\int_{{0}}^{{2 \pi}}\sin^{2m+1}{x}\ cos^{2n+1}{x}\;\mathrm{d}x = 0 \! \qquad \{n,m\} \in \mathbb{Z}</math>
| |
| ==References==
| |
| {{Reflist}}
| |
| | |
| {{Lists of integrals}}
| |
| | |
| [[Category:Integrals|Trigonometric functions]]
| |
| [[Category:Trigonometry]]
| |
| [[Category:Mathematics-related lists|Integrals of trigonometric functions]]
| |