Optical microscope: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>MusikAnimal
m Reverted edits by 59.178.56.57 (talk): editing tests (HG)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], '''matrix addition''' is the operation of adding two [[matrix (mathematics)|matrices]] by adding the corresponding entries together. However, there are other operations which could also be considered as a kind of [[addition]] for matrices, the [[direct sum]] and the [[Kronecker sum]].
Im Taylor and was born on 10 March 1986. My hobbies are Auto audiophilia and Stamp collecting.<br><br>My web-site - [http://download.cnet.com/PDF-to-Word-Converter-Free/3000-18497_4-76126166.html Free PDF to Word Converter]
 
==Entrywise sum==
The usual matrix addition is defined for two matrices of the same dimensions. The sum of two ''m'' × ''n'' (pronounced "m by n") matrices '''A''' and '''B''', denoted by '''A''' + '''B''', is again an ''m'' × ''n'' matrix computed by adding corresponding elements:{{sfn |Lipschutz |Lipson}}<ref>{{cite book |title=Mathematical methods for physics and engineering |first1=K.F. |last1=Riley |first2=M.P.|last2=Hobson |first3=S.J. |last3=Bence | publisher=Cambridge University Press |year=2010 |isbn=978-0-521-86153-3}}</ref>
 
:<math>\begin{align}
\bold{A}+\bold{B} & = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} \\
\end{bmatrix} +
 
\begin{bmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m1} & b_{m2} & \cdots & b_{mn} \\
\end{bmatrix} \\
& = \begin{bmatrix}
a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\
\end{bmatrix} \\
 
\end{align}\,\!</math>
 
For example:
 
:<math>
  \begin{bmatrix}
    1 & 3 \\
    1 & 0 \\
    1 & 2
  \end{bmatrix}
+
  \begin{bmatrix}
    0 & 0 \\
    7 & 5 \\
    2 & 1
  \end{bmatrix}
=
  \begin{bmatrix}
    1+0 & 3+0 \\
    1+7 & 0+5 \\
    1+2 & 2+1
  \end{bmatrix}
=
  \begin{bmatrix}
    1 & 3 \\
    8 & 5 \\
    3 & 3
  \end{bmatrix}
</math>
 
We can also subtract one matrix from another, as long as they have the same dimensions. '''A''' &minus; '''B''' is computed by subtracting corresponding elements of '''A''' and '''B''', and has the same dimensions as '''A''' and '''B'''. For example:
 
:<math>
\begin{bmatrix}
1 & 3 \\
1 & 0 \\   
1 & 2
\end{bmatrix}
-
\begin{bmatrix}
0 & 0 \\
7 & 5 \\
2 & 1
\end{bmatrix}
=
\begin{bmatrix}
1-0 & 3-0 \\
1-7 & 0-5 \\
1-2 & 2-1
\end{bmatrix}
=
\begin{bmatrix}
1 & 3 \\
-6 & -5 \\
-1 & 1
\end{bmatrix}
</math>
 
==<span id="directsum" />Direct sum==
Another operation, which is used less often, is the direct sum (denoted by ⊕). Note the Kronecker sum is also denoted ⊕; the context should make the usage clear.  The direct sum of any pair of matrices '''A''' of size ''m'' &times; ''n'' and '''B''' of size ''p'' &times; ''q'' is a matrix of size (''m'' + ''p'') &times; (''n'' + ''q'') defined as <ref>{{MathWorld |id=MatrixDirectSum |title=Matrix Direct Sum}}</ref>{{sfn |Lipschutz |Lipson}}
 
:<math>
  \bold{A} \oplus \bold{B} =
  \begin{bmatrix} \bold{A} & \boldsymbol{0} \\ \boldsymbol{0} & \bold{B} \end{bmatrix} =
  \begin{bmatrix}
    a_{11} & \cdots & a_{1n} &      0 & \cdots &      0 \\
    \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
    a_{m 1} & \cdots & a_{mn} &      0 & \cdots &      0 \\
          0 & \cdots &      0 & b_{11} & \cdots &  b_{1q} \\
    \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
          0 & \cdots &      0 & b_{p1} & \cdots &  b_{pq}
  \end{bmatrix}
</math>
 
For instance,
 
:<math>
  \begin{bmatrix}
    1 & 3 & 2 \\
    2 & 3 & 1
  \end{bmatrix}
\oplus
  \begin{bmatrix}
    1 & 6 \\
    0 & 1
  \end{bmatrix}
=
  \begin{bmatrix}
    1 & 3 & 2 & 0 & 0 \\
    2 & 3 & 1 & 0 & 0 \\
    0 & 0 & 0 & 1 & 6 \\
    0 & 0 & 0 & 0 & 1
  \end{bmatrix}
</math>
 
The direct sum of matrices is a special type of [[block matrix]], in particular the direct sum of square matrices is a [[Block matrix#Block diagonal matrices|block diagonal matrix]].
 
The [[adjacency matrix]] of the union of disjoint [[graph (mathematics)|graphs]] or [[multigraph]]s is the direct sum of their adjacency matrices. Any element in the [[Direct sum of modules|direct sum]] of two [[vector space]]s of matrices can be represented as a direct sum of two matrices.
 
In general, the direct sum of ''n'' matrices is:{{sfn |Lipschutz |Lipson}}
:<math>
\bigoplus_{i=1}^{n} \bold{A}_{i} = {\rm diag}( \bold{A}_1, \bold{A}_2, \bold{A}_3 \cdots \bold{A}_n)=
\begin{bmatrix}
\bold{A}_1 & \boldsymbol{0} & \cdots & \boldsymbol{0} \\
\boldsymbol{0} & \bold{A}_2 & \cdots & \boldsymbol{0} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{0} & \boldsymbol{0} & \cdots & \bold{A}_n \\
\end{bmatrix}\,\!</math>
 
where the zeros are actually blocks of zeros, i.e. zero matricies.
 
NB: Sometimes in this context, boldtype for matrices is dropped, matricies are written in italic.
 
==Kronecker sum==
{{main|Kronecker sum}}
The Kronecker sum is different from the direct sum but is also denoted by ⊕. It is defined using the [[Kronecker product]] ⊗ and normal matrix addition. If '''A''' is ''n''-by-''n'', '''B''' is ''m''-by-''m'' and  <math>\mathbf{I}_k</math> denotes the ''k''-by-''k'' identity matrix then the Kronecker sum is defined by:
:<math> \mathbf{A} \oplus \mathbf{B} = \mathbf{A} \otimes \mathbf{I}_m + \mathbf{I}_n \otimes \mathbf{B}. </math>
 
==See also==
* [[Matrix multiplication]]
* [[Vector addition]]
 
==Notes==
{{reflist}}
 
==References==
* {{cite book |ref=harv |title=Linear Algebra |first1=S. |last1=Lipschutz |first2=M. |last2=Lipson |series=Schaum's Outline Series |year=2009 |isbn=978-0-07-154352-1}}
 
==External links==
 
*{{PlanetMath |urlname=DirectSumOfMatrices |title= Direct sum of matrices}}
 
* [http://ncalculators.com/matrix/4x4-matrix-addition-subtraction-calculator.htm 4x4 Matrix Addition and Subtraction]
* [http://drexel28.wordpress.com/2010/12/22/direct-sum-of-linear-transformations-and-direct-sum-of-matrices-pt-iii/ Abstract nonsense: Direct Sum of Linear Transformations and Direct Sum of Matrices]
* [http://www.mymathlib.com/matrices/arithmetic/direct_sum.html Mathematics Source Library: Arithmetic Matrix Operations]
* [http://www.aps.uoguelph.ca/~lrs/ABMethods/NOTES/CDmatrix.pdf Matrix Algebra and R]
 
[[Category:Linear algebra]]
[[Category:Binary operations]]

Latest revision as of 08:13, 11 December 2014

Im Taylor and was born on 10 March 1986. My hobbies are Auto audiophilia and Stamp collecting.

My web-site - Free PDF to Word Converter