Multistatic radar: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
Line 1: Line 1:
{{for|the movement system created by Carlos Castaneda|Tensegrity (Castaneda)}}
If you are reading this short article then I could securely assume you are seeking some hemorrhoid treatments you can do at home. If you are, then please read on. Let you first define what hemorrhoids are and what causes them, after knowing which, then we may find powerful house treatments you may use. Basically hemorrhoids are swollen veins in our anal canal. It is similar to varicose veins, nevertheless rather of it being in the legs it is actually found inside the anal canal.<br><br>Try to apply petroleum jelly to the region where we have hemorrhoid. You may feel better in no time following applying some. We may feel the symptoms are virtually gone. Well, use of petroleum jelly is considered as the many affordable and painless [http://hemorrhoidtreatmentfix.com/hemorrhoid-relief hemorrhoid relief].<br><br>There are many treatments that is selected for hemorrhoid. The first and the most well known is the cream plus ointment. These are to be rubbed onto the affected part of the anus. It assists to soothe the already inflamed blood vessels and a momentary relief is attained. There is a relaxation of the tissues of the rectal column thus far the hemorrhoid is not so much bulged. If there is a bulge nevertheless, the pain relief might not do thus much to aid.<br><br>It's whenever the veins inside the rectum receive swollen to the point of bleeding plus this causes too much pain. Some attributes to the condition on inadequate intake of fiber, prolonged sitting on the toilet plus straining each bowel movement however, in truth, it has numerous factors but amidst that, just one thing is certain: it is actually unbearable and the discomfort caused by hemorrhoids can definitely avoid you from doing your usual daily activities.<br><br>Then, don't strain out. I do have 1 answer which has aided tremendously. I would like to review a surprisingly safe plus all-natural treatment that functions effectively in a limited days. It is known as the H Miracle system.<br><br>Believe me I recognize. I recognize how painful, inconvenient plus embarrassing hemorrhoids will be. For me the big issue was the itching. I mean what will you potentially do to relieve the itch when you are sitting down all day in a busy workplace encircled by colleagues?<br><br>I understand this will sound like a great deal of water, however in the event you are suffering from a hemorrhoid you want to try to drink at least 1 full gallon of water per day. If you can't do this, begin off with half a gallon plus move up from there. This usually help avoid constipation.
{{stereo image
|image  = tensegrity_simple_3_RL.png
|caption = <span style="border:outset 1px #999999;background:#cccccc;color:#000000;padding:2px;">'''[[:File:Tensegrity simple 3.gif|Animation]]'''</span> The simplest tensegrity structure. Each of three compression members (green) is symmetric with the other two, and symmetric from end to end. Each end is connected to three cables (red) which provide compression and which precisely define the position of that end in the same way as the three cables in the [[Skylon (tower)|Skylon tower]] define the bottom end of its tapered pillar.
|width  = 384
|height  = 256
|swap    = 1
}}
'''Tensegrity''', '''tensional integrity''' or '''floating compression''', is a structural principle based on the use of isolated components in [[compression (physical)|compression]] inside a net of continuous [[tension (mechanics)|tension]], in such a way that the compressed members (usually bars or struts) do not touch each other and the [[Prestressed structure|prestressed]] tensioned members (usually cables or tendons) delineate the system spatially.<ref>{{Cite book|last1=Gómez-Jáuregui|first1=V|year=2010|ISBN=8481025755|title=Tensegrity Structures and their Application to Architecture|publisher=Servicio de Publicaciones Universidad de Cantabria, p.19}}</ref>
 
The term ''[[wiktionary:tensegrity|tensegrity]]'' was coined by [[Buckminster Fuller]] in the 1960s as a [[portmanteau]] of "tensional integrity".<ref>{{Cite journal|url=http://www.jaoa.org/content/113/1/34.long|last1=Swanson|first1=RL|title=Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research-a review and analysis|journal=The Journal of the American Osteopathic Association |volume=113 |issue=1 |pages=34–52 |year=2013 |pmid=23329804}}</ref> The other denomination of tensegrity, ''floating compression'', was used mainly by [[Kenneth Snelson]].  Tensegrity as "The Architecture of Life" is an idea developed by [[Donald E. Ingber]], explained in a January 1998 article in ''[[Scientific American]]''.<ref name=Ingber>Ingber (January 1998)</ref>
 
==Concept==
 
[[File:In16695.jpg|upright|thumb|right|The [[Skylon (tower)|Skylon tower]] at the [[Festival of Britain]], 1951]]
{{stereo image
|image  = tensegrity_simple_4_RL.png
|caption = <span style="border:outset 1px #999999;background:#cccccc;padding:2px;margin-top:1px;">'''[[:File:Tensegrity simple 4.gif|Animation]]'''</span> A similar structure but with four compression members.
|width  = 384
|height  = 256
|swap    = 1
}}
Tensegrity structures are structures based on the combination of a few simple design patterns:
* loading members only in pure compression or pure tension, meaning the structure will only fail if the cables yield or the rods buckle
* [[preload (engineering)|preload]] or tensional [[prestressed structure|prestress]], which allows cables to be rigid in tension
* mechanical stability, which allows the members to remain in tension/compression as stress on the structure increases
Because of these patterns, no structural member experiences a [[bending moment]]. This can produce exceptionally rigid structures for their mass and for the cross section of the components.
 
A conceptual building block of tensegrity is seen in the 1951 [[Skylon (tower)|Skylon tower]]. Six [[wire rope|cable]]s, three at each end, hold the tower in position. The three cables connected to the bottom "define" its location.  The other three cables are simply keeping it vertical.
 
A three-rod tensegrity structure (shown) builds on this: the ends of each rod look like the bottom of the Skylon tower. As long as the angle between any two cables is smaller than 180°, the position of the rod is well defined. There are also three connection points defining the position the rod tops.  This makes the overall structure stable. Variations such as [[Needle Tower]] involve more than three cables meeting at the end of a rod, but these can be thought of as three cables defining the position of that rod end with the additional cables simply attached to that [[well-defined]] [[point (geometry)|point]] in space.
 
Eleanor Hartley points out visual transparency as an important aesthetic quality of these structures.<ref>Eleanor Hartley, "Ken Snelson and the Aesthetics of Structure," in the Marlborough Gallery catalogue for ''Kenneth Snelson: Selected Work: 1948 - 2009'', exhibited February 19 through March 21, 2009.</ref> Korkmaz ''et al.''<ref name="korkmaz1">Korkmaz, et al. (June 2011)</ref><ref name="korkmaz2">Korkmaz, et. al (2011)</ref> put forward that the concept of tensegrity is suitable for [[adaptive architecture]] thanks to lightweight characteristics.
 
== Applications ==
[[File:Tensegrity Structure - Science Park - Science City - Kolkata 2010-02-18 4567.JPG|upright|thumb|A 12m high tensegrity structure exhibit at the [[Science City Kolkata|Science City]], [[Kolkata]].]]
 
The idea was adopted into architecture in the 1960s when [[Maciej Gintowt]] and [[Maciej Krasiński]], architects of [[Spodek]], a venue in [[Katowice]], [[Poland]], designed it as one of the first major structures to employ the principle of tensegrity. The roof uses an inclined surface held in check by a system of cables holding up its circumference.
 
In the 1980s [[David Geiger]] designed Seoul [[Olympic Gymnastics Arena]] for the [[1988 Summer Olympics]]. The [[Georgia Dome]], which was used for the [[1996 Summer Olympics]] is a large tensegrity structure of similar design to the aforementioned Gymnastics Hall.
 
Shorter columns or struts in compression are stronger than longer ones.  This in turn led some, namely [[Buckminster Fuller|Fuller]], to make claims that tensegrity structures could be scaled up to cover whole cities.
 
As Harvard physician and scientist [[Donald E. Ingber]] explains:
{{quote|The tension-bearing members in these structures&thinsp;—&thinsp;whether Fuller's domes or Snelson's sculptures&thinsp;—&thinsp;map out the shortest paths between adjacent members (and are therefore, by definition, arranged geodesically) Tensional forces naturally transmit themselves over the shortest distance between two points, so the members of a tensegrity structure are precisely positioned to best withstand stress. For this reason, tensegrity structures offer a maximum amount of strength.{{citation needed|date=November 2012}} }}
 
On 4 October 2009, the [[Kurilpa Bridge, Brisbane|Kurilpa Bridge]] opened across the [[Brisbane River]] in [[Queensland, Australia]]. The bridge is a multiple-mast, cable-stay structure based on the principles of tensegrity. It is also the largest tensegrity structure in existence.
 
== Biology ==
Biotensegrity, a term coined by Dr. Stephen Levin, is the application of tensegrity principles to biologic structures.<ref>Levin, Stephen, "Tensegrity, The New Biomechanics"; Hutson, M & Ellis, R (Eds.), Textbook of Musculoskeletal Medicine. Oxford: Oxford University Press. 2006</ref> Biological structures such as [[muscle]]s, [[skeleton|bones]], [[fascia]], [[ligaments]] and [[tendons]], or rigid and elastic [[cell membrane]]s, are made strong by the unison of tensioned and compressed parts. The muscular-skeletal system is a synergy of muscle and bone. The muscles and connective tissues provide continuous pull<ref>Musculoskeletal Prestress, "[http://linkinghub.elsevier.com/retrieve/pii/S0021929009003558]", ''Journal of Biomechanics'', October 2009.</ref> and the bones present the discontinuous compression.
 
A theory of tensegrity in [[molecular biology]] to explain cellular structure has been developed by Donald Ingber.<ref name=Ingber/> For instance, the expressed shapes of cells, whether it be their reactions to applied pressure, interactions with substrates, etc., all can be mathematically modeled if a tensegrity model is used for the cell's [[cytoskeleton]]. Furthermore, the geometric patterns found throughout nature (the helix of [[DNA]], the geodesic dome of a [[volvox]], [[Buckminsterfullerene]], and more) may also be understood based on applying the principles of tensegrity to the spontaneous self-assembly of compounds, proteins, and even organs. This view is supported by how the tension-compression interactions of tensegrity minimize material needed, add structural resiliency, and constitute the most efficient possible use of space. Therefore, [[natural selection]] pressures would strongly favor biological systems organized in a tensegrity manner.<ref>{{cite journal|last=Ingber|first=Donald|journal=Scientific American|date=January 1998}}</ref>
 
==History==
[[Image:Snelson XModule Design 1948.png|thumb|Kenneth Snelson's 1948 X-Module Design as embodied in a two-module column<ref>Maria Gough, [http://links.jstor.org/sici?sici=0162-2870(199821)84%3C90%3AITLOCK%3E2.0.CO%3B2-8 "In the Laboratory of Constructivism: Karl Ioganson's Cold Structures"] ''October'', Vol. 84 (Spring, 1998), p. 109.</ref>]]
The origins of tensegrity are controversial.<ref name="origins">{{cite journal |last=Gómez-Jáuregui |first=V. |title=Controversial Origins of Tensegrity |journal= International Association of Spatial Structures IASS Symposium 2009, Valencia | year = 2009 | url =http://www.tensegridad.es/Publications/Controversial_Origins_Of_Tensegrity_by_GOMEZ-JAUREGUI.pdf}}</ref> In 1948, [[artist]] [[Kenneth Snelson]] produced his innovative "X-Piece" after artistic explorations at [[Black Mountain College]] (where [[Buckminster Fuller]] was lecturing) and elsewhere. Some years later, the term "tensegrity" was coined by Fuller, who is best known for his [[geodesic dome]]s. Throughout his career, Fuller had experimented incorporating tensile components in his work, such as in the framing of his dymaxion houses.<ref>
''Dymaxion World of Buckminster Fuller'', chapter on Tensegrity.</ref>
 
Snelson's 1948 innovation spurred Fuller to immediately commission a mast from Snelson. In 1949, Fuller developed an [[icosahedron]] based on the technology, and he and his students quickly developed further structures and applied the technology to building domes. After a hiatus, Snelson also went on to produce a plethora of [[sculpture]]s based on tensegrity concepts. Snelson's main body of work began in 1959 when a pivotal exhibition at the [[Museum of Modern Art]] took place. At the MOMA exhibition, Fuller had shown the mast and some of his other work.<ref>See photo of Fuller's work at this exhibition in his 1961 article on tensegrity for the ''Portfolio and Art News Annual'' (No.4).</ref>
At this exhibition, Snelson, after a discussion with Fuller and the exhibition organizers regarding credit for the mast, also displayed some work in a [[display case|vitrine]].<ref name="Lalvani 1996, p. 47">Lalvani (1996), p. 47.</ref>
 
Snelson's best known piece is his 18-meter-high ''[[Needle Tower]]'' of 1968.
 
Russian artist [[Viatcheslav Koleichuk]] claimed that the idea of tensegrity was invented first by [[Karl Ioganson]], Russian artist of Latvian descent, who contributed some works to the main exhibition of Russian [[Constructivism (art)|constructivism]] in 1921.<ref name=moscowtimes>{{cite web | url = http://context.themoscowtimes.com/stories/2006/08/18/101.html | title = Building Blocks | accessdate = 2011-03-28 | last = Droitcour | first = Brian | date = 2006-08-18 | work = [[The Moscow Times]] | archiveurl = http://replay.waybackmachine.org/20081007061240/http://context.themoscowtimes.com/stories/2006/08/18/101.html | archivedate = 2008-10-07 | quote = With an unusual mix of art and science, Vyacheslav Koleichuk resurrected a legendary 1921 exhibition of Constructivist art.}}</ref> Koleichuk's claim was backed up by Maria Gough for one of the works at the 1921 constructivist exhibition.<ref>Gough (1998), pp. 90-117.</ref> Snelson has acknowledged the constructivists as an influence for his work.<ref>In Snelson's article for Lalvani, 1996, I believe.</ref> French engineer David Georges Emmerich has also noted how Ioganson's work seemed to foresee tensegrity concepts.<ref>
David Georges Emmerich, ''Structures Tendues et Autotendantes'', Paris: Ecole d'Architecture de Paris la Villette, 1988, pp. 30-31.</ref>
 
==Mathematical explanation==
[[File:Tensegrity icosahedron.png|thumb|Mathematical model of the tensegrity icosahedron]]
[[File:Tensegrity icosahedron shapes.png|thumb|Different shapes of tensegrity icosahedra, depending on the ratio between the lengths of the tendons and the struts.]]
 
The following is a mathematical model for figures related to the tensegrity icosahedron, which explains why the tensegrity icosahedron is a stable construction, albeit with infinitesimal mobility.<ref>{{cite web |url= http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/sammlung/ten.htm  |title=Tensegrity Figuren |author= |year= |work= |publisher=Universität Regensburg|accessdate=2 April 2013}}</ref>
 
Consider a cube of side length ''2d'', centered at the origin. Place a strut of length ''2l'' on each face of the cube, so that each strut is parallel to one edge of the face and meets the center of the face. Moreover, each strut should be parallel to the strut on the opposite face of the cube, but orthogonal to all other struts.
The coordinates of one vertex of the struts are ''(0,d,l)'', the coordinates of the other vertices can be obtained by either cyclicly rotating the coordinates ''(0,d,l)→(d,l,0)→(l,0,d)'' (rotational symmetry in the main diagonal of the cube) or by changing the sign of the coordinates ''(0,d,l)→(0,-d,l)→(0,-d,-l)→(0,d,-l)'' (mirror symmetries in the coordinate planes). The distance ''s'' between two neighbouring vertices can be obtained from the following relation
:<math>s^2 = (d-l)^2 + d^2 + l^2 = 2(d-\frac 1 2 \,l)^2 + \frac 3 2 \,l^2</math>
Now imagine, this figure is built from struts of length ''2l'' and tendons of length ''s'' connecting neighbouring endpoints. The relation tells us, that for <math>s > \sqrt{3 / 2}\,l</math> there are two possible values for ''d'': one is realized by pushing the struts together, the other by pulling them apart. For example for <math>s=\sqrt 2 \,l</math> the minimal figure ''(d=0)'' is a [[regular polyhedron|regular]] [[octahedron]] and the maximal figure ''(d=l)'' is a [[Quasiregular polyhedron|quasiregular]] [[cubeoctahedron]]. When <math>s =\frac {1} {2} (\sqrt 5 - 1)</math> then ''s = 2d'', so the [[convex hull]] of the maximal figure is a [[regular polyhedron|regular]] [[icosahedron]].
 
In the case  <math>s = \sqrt{3/2}\,l</math> the two extremes <math>d=\frac 1 2 \,l</math> coincide, therefore the figure is the stable tensegrity icosahedron.
 
Since the tensegrity icosahedron represents an extremal point of the above relation, it has infinitesimal mobility: a small change in the length ''s'' of the tendon (e.g. by stretching the tendons) results in a much larger change of the distance ''2d'' of the struts.
 
==Patents==
* {{US patent|3063521}}, "Tensile-Integrity Structures," November 13, 1962, Buckminster Fuller.
* French Patent No. 1,377,290, [http://www.tensegridad.es/Publications/Patents/Emmerich/FR1377290A.pdf "Construction de Reseaux Autotendants"], September 28, 1964, David Georges Emmerich.
* French Patent No. 1,377,291, [http://www.tensegridad.es/Publications/Patents/Emmerich/FR1377291A.pdf "Structures Linéaires Autotendants"], September 28, 1964, David Georges Emmerich.
* {{US patent|3139957}}, "Suspension Building" (also called aspension), July 7, 1964, Buckminster Fuller.
* {{US patent|3169611}}, "Continuous Tension, Discontinuous Compression Structure," February 16, 1965, Kenneth Snelson.
* {{US patent|3866366}}, "Non-symmetrical Tension-Integrity Structures," February 18, 1975, Buckminster Fuller.
 
==Basic tensegrity structures==
<gallery>
File:3-tensegrity.svg|The simplest tensegrity structure (a 3-prism)
File:Tensegrity 3-Prism.png|Another 3-prism
File:4-tensegrity.svg|A similar structure but with four compression members.
File:Proto-Tensegrity by Ioganson.jpg|Proto-Tensegrity Prism by Karl Ioganson, 1921<ref group="gallery">Gómez-Jáuregui (2010), Fig. 2.1, p. 28.</ref>
File:Tensegrity Icosahedron.png|Tensegrity Icosahedron, [[Buckminster Fuller]], 1949<ref group="gallery">Fuller and Marks (1960), Fig. 270.</ref>
File:Tensegrity Tetrahedron.png|Tensegrity Tetrahedron, Francesco della Salla, 1952<ref group="gallery">Fuller and Marks (1960), Fig. 268.</ref>
File:Tensegrity X-Module Tetrahedron.png|Tensegrity X-Module Tetrahedron, [[Kenneth Snelson]], 1959<ref group="gallery">Lalvani (1996), p. 47</ref>
</gallery>
 
==See also==
* [[Cloud Nine (tensegrity sphere)|Cloud Nine]]
* [[Hyperboloid structure]]
* [[Interactions of actors theory]]
* [[Saddle roof]]
* [[Space frame]]
* [[Synergetics (Fuller)|Synergetics]]
* [[Tensairity]]
* [[Tensile structure]]
* [[Thin-shell structure]]
 
==References==
{{Reflist}}
 
===Gallery===
{{reflist|group=gallery}}
 
==Bibliography==
*Fuller, Buckminster. [http://www.rwgrayprojects.com/synergetics/s07/toc07.html SYNERGETICS—Explorations in the Geometry of Thinking], Volumes I & II, New York, Macmillan Publishing Co, 1975, 1979.
*Fuller, Buckminster. "[http://www.rwgrayprojects.com/rbfnotes/fpapers/tensegrity/tenseg01.html Tensegrity]," ''Portfolio and Art News Annual'', No. 4 (1961), pp.&nbsp;112–127, 144, 148.
*Fuller, R. Buckminster; Marks, Robert. ''The Dymaxion World of Buckminster Fuller'', Garden City, New York: Anchor Books, 1973 (originally published in 1960 by So. Ill. Univ. Press), Figs. 261-280. A good overview on the scope of tensegrity from Fuller's point of view, and an interesting overview of early structures with careful attributions most of the time.
*{{cite book |last=Gómez-Jáuregui |first=Valentin |year=2007 |title=Tensegridad. Estructuras Tensegríticas en Ciencia y Arte |location=Santander |publisher=Universidad de Cantabria |isbn=978-84-8102-437-1}} {{Es icon}}
*{{cite book |last=Gómez-Jáuregui |first=Valentín |year=2010 |title=Tensegrity Structures and their Application to Architecture |location=Santander |publisher=Servicio de Publicaciones de la Universidad de Cantabria. isbn=978-84-8102-575-0}}
*{{cite news |last=Ingber |first=Donald E. |url=http://web1.tch.harvard.edu/research/ingber/PDF/1998/SciAmer-Ingber.pdf |title=The Architecture of Life |journal=[[Scientific American]] |date=January 1998}}
*{{cite journal |last=Korkmaz |first=Sinan |coauthors=Bel Hadj Ali, Nizar, Smith, Ian F.C. |title=Configuration of Control System for Damage Tolerance of a Tensegrity Bridge |journal= Advanced Engineering Informatics |doi=  10.1016/j.aei.2011.10.002 |year = 2011 |volume=26 | page=145}}
*{{cite journal |last=Korkmaz |first=Sinan |coauthors=Bel Hadj Ali, Nizar, Smith, Ian F.C. |title=Determining Control Strategies for Damage Tolerance of an Active Tensegrity Structure |journal=Engineering Structures |doi=10.1016/j.engstruct.2011.02.031 |volume=33  |issue=6 |pages=1930–1939 |date=June 2011 |url=http://infoscience.epfl.ch/record/164609/files/Korkmaz%20et%20al,%20Determining%20Control%20Strategies%20for%20Damage%20Tolerance%20of%20an%20Active%20Tensegrity%20Structure,%20Engineering%20Structures%20(2011)_2.pdf}}
*{{cite news |last=Lalvani |first=Haresh (ed.) |title=Origins of Tensegrity: Views of Emmerich, Fuller and Snelson |journal=International Journal of Space Structures |volume=11 |year=1996 |number=1, 2 |pages=27–55}}
*{{Citation
  | last = Juan
  | first = S. J.
  | last2 =Tur
  | first2 = J M
  | title = Tensegrity frameworks: Static analysis review
  | journal = Mechanism and Machine Theory
  | volume = 43, 7
|date=July 2008
  | chapterurl =
  | pages =859–881
  | url = http://www.sciencedirect.com/science/article/pii/S0094114X07001218
  | accessdate =2 April 2013
  | doi=10.1016/j.mechmachtheory.2007.06.010}}
 
==Further reading==
{{More footnotes|date=March 2009}}
*Di Carlo, Biagio.  "STRUTTURE TENSEGRALI". Quaderni di Geometria Sinergetica, Pescara 2004. http://www.biagiodicarlo.com
*Edmondson, Amy. ''A Fuller Explanation'', EmergentWorld LLC, 2007. Earlier version available online at http://www.angelfire.com/mt/marksomers/40.html
*Forbes, Peter. ''The Gecko's Foot: How Scientists are Taking a Leaf from Nature's Book'', Harper Perennial, 2006, pp.&nbsp;197–230.
*Hanaor, Ariel, "Tensegrity: Theory and Application," Chapter 13 (pp.&nbsp;385–408) in J. François Gabriel, ''Beyond the Cube: The Architecture of Space Frames and Polyhedra'', New York: John Wiley & Sons, Inc., 1997.
*Kenner, Hugh. ''Geodesic Math and How to Use It'', Berkeley, California: University of California Press, 1976. Now back in print. This is a good starting place for learning about the mathematics of tensegrity and building models.
*Masic, Milenko, Robert E. Skelton and Philip E. Gill, "[http://www.cam.ucsd.edu/~peg/papers/tensegrity1.pdf Algebraic tensegrity form-finding]," ''International Journal of Solids and Structures'', Vol. 42, Nos. 16-17 (Aug 2005), pp.&nbsp;4833–4858. They present the remarkable result that any [[linear transformation]] of a tensegrity is also a tensegrity.
*{{Cite journal|author=Morgan, G.J. |year=2003 |title= Historical Review: Viruses, Crystals and Geodesic Domes| journal=[[Trends in Biochemical Sciences (journal)|Trends in Biochemical Sciences]] |volume=28| pages=86–90 |doi= 10.1016/S0968-0004(02)00007-5 |pmid=12575996 |authorlink= Gregory J Morgan|issue=2}}
*Motro, R., "Tensegrity Systems: The State of the Art," ''International Journal of Space Structures'', Vol. 7 (1992), No. 2, pp.&nbsp;75–84.
*Pugh, Anthony. [http://www.antiqbook.com/boox/vel/29501.shtml An Introduction to Tensegrity], University of California Press, Berkeley and Los Angeles California, 1976, ISBN 0-520-03055-9
*Snelson, Kenneth. [http://www.grunch.net/snelson/rmoto.html Letter to R. Motro], ''International Journal of Space Structures'', November 1990.
*Souza, et al., "[http://linkinghub.elsevier.com/retrieve/pii/S0021929009003558 Prestress revealed by passive co-tension at the ankle joint]", ''Journal of Biomechanics'', October 2009.
*Vilnay, Oren, ''Cable Nets and Tensegric Shells: Analysis and Design Applications'', New York: Ellis Horwood Ltd., 1990.
*Wang, Bin-Bing, "Cable-strut systems: Part I - Tensegrity," ''Journal of Constructional Steel Research'', Vol. 45 (1998), No. 3, pp.&nbsp;281–289.
*Wilken, Timothy. ''Seeking the Gift Tensegrity'', TrustMark, 2001.
 
==External links==
{{External links|date=January 2012}}
{{Commons category}}
* [http://www.scholarpedia.org/article/Tensegrity "Tensegrity" Scholarpedia article]
* [http://www.pointcontrepoint.fr/ Point, contrepoint.] French tensegrity, art and design.
* [http://imac.epfl.ch/ Scientific Publications in the Field of Tensegrity] by Swiss Federal Institute of Technology (EPFL), Applied Computing and Mechanics Laboratory (IMAC)
* [http://www.tensegridad.es/ Valentin Gomez-Jauregui's site] A web page (in English and Spanish) showing images, references and explanations about tensegrity.
*[http://www.kennethsnelson.net/ Kenneth Snelson's site] with an article on the theory and development of tensegrity as well as pictures of his sculptures from desktop pieces to 90-foot towers.
*[http://www.grunch.net/snelson/ Kirby Urner's page on Kenneth Snelson], developed in collaboration with the artist before the above official site came on-line, still relevant.
*[http://www.architizer.com/en_us/projects/view/dubai-tensegrity-tower/427/ Dubai Tensegrity Tower] designed by Aurel von Richthofen includes diagrams of proposed tower with elevator.
*[http://www.synearth.net/Restricted-Confidential/OT.pdf Ortegrity by Timothy Wilken, MD 2002], 70-page-long PDF document describing human interactions in terms of tensegrity.
*[http://www.childrenshospital.org/cfapps/research/data_admin/Site3022/mainpageS3022P6.html Tensegrity in a Cell]—This interactive feature allows you to control a cell's internal structural elements. From Donald Ingber and the research department of Children's Hospital Boston.
*[http://www.biotensegrity.com/ Stephen Levin's Biotensegrity site] Several papers on the tensegrity mechanics of biologic structures from viruses to vertebrates by an Orthopedic Surgeon.
*[http://arxiv.org/abs/physics/0404038/ The Dynamic Template site]: an article by Dr. Lofthouse that demonstrates how spatially organised flows of aminophospholipids in the red blood cell membrane convert the cell surface into a "Dynamic Template" for its cortical Spectrin cytoskeleton. This is the only model to date that provides biological cells with a mechanism capable of pre-stressing flexible, membrane-associated protein networks, which is absent from Glanz & Ingbers' exclusively protein-based models of cellular "tensegrity" structures.
*[http://www.tensegriteit.nl Tensegrity examples] Several tensegrity examples by Marcelo Pars.
*[http://sites.google.com/site/saccopoulossculpture Sine Utilitate] Examples of contemporary sculptural constructions by Christos Saccopoulos using tensegrity principles.
* [http://www.xozzox.com/objects.html Virtual 3D tensegrity structures] an interactive Java applet simulating various selectable structures.
 
[[Category:Tensile architecture]]
[[Category:Buckminster Fuller]]

Latest revision as of 02:01, 30 December 2014

If you are reading this short article then I could securely assume you are seeking some hemorrhoid treatments you can do at home. If you are, then please read on. Let you first define what hemorrhoids are and what causes them, after knowing which, then we may find powerful house treatments you may use. Basically hemorrhoids are swollen veins in our anal canal. It is similar to varicose veins, nevertheless rather of it being in the legs it is actually found inside the anal canal.

Try to apply petroleum jelly to the region where we have hemorrhoid. You may feel better in no time following applying some. We may feel the symptoms are virtually gone. Well, use of petroleum jelly is considered as the many affordable and painless hemorrhoid relief.

There are many treatments that is selected for hemorrhoid. The first and the most well known is the cream plus ointment. These are to be rubbed onto the affected part of the anus. It assists to soothe the already inflamed blood vessels and a momentary relief is attained. There is a relaxation of the tissues of the rectal column thus far the hemorrhoid is not so much bulged. If there is a bulge nevertheless, the pain relief might not do thus much to aid.

It's whenever the veins inside the rectum receive swollen to the point of bleeding plus this causes too much pain. Some attributes to the condition on inadequate intake of fiber, prolonged sitting on the toilet plus straining each bowel movement however, in truth, it has numerous factors but amidst that, just one thing is certain: it is actually unbearable and the discomfort caused by hemorrhoids can definitely avoid you from doing your usual daily activities.

Then, don't strain out. I do have 1 answer which has aided tremendously. I would like to review a surprisingly safe plus all-natural treatment that functions effectively in a limited days. It is known as the H Miracle system.

Believe me I recognize. I recognize how painful, inconvenient plus embarrassing hemorrhoids will be. For me the big issue was the itching. I mean what will you potentially do to relieve the itch when you are sitting down all day in a busy workplace encircled by colleagues?

I understand this will sound like a great deal of water, however in the event you are suffering from a hemorrhoid you want to try to drink at least 1 full gallon of water per day. If you can't do this, begin off with half a gallon plus move up from there. This usually help avoid constipation.